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FOREWORD

The overall objective of this NASA program has been to develop and
implement several computer programs suitable for the design of lobe
forced mixer nozzles. The approach consisted of extending and
existing analytical nacelle analysis to handle two stream flows where
one of the streams is at a higher energy. Initially the calculation
was set up to handle a round, free mixer i'ncluding satisfying the
Kutta condition at the trailing edge of the mixer. Once developed and
calibrated, the same analysis was extended to handle periodic
boundary conditions associated with typical engine forced mixers. The
extended analysis was applied to severa! mixer lobe shapes to predict
the downstream vorticity generated by different lobe shapes. Data was
taken in a simplified planar mixer mode! tunnel to calibrate and
evaluate the analysis. Any discrepancies between measured secondary
flows emanating downstream of the lobes and predicted vorticity by
the analysis is fully reviewed and explained. The Tobe analysis are
combined with an existing 3D viscous calculation to help assess and
explain measured lobed data.

The program also investigated technology required to design forced
mixer geometries for augmentor engines that can provide both the
stealth and performance requirements of future strategic aircraft.
For this purpose, UTC's available mixer background was used to design
several preliminary mixer concepts for application in a exhaust
system. Based on preliminary performance estimates using available
correlations, two mixer configurations will be selected for further
testing and analysis.

The results of the program are summarized in three volumes, all under
the global title, "Turbofan Forced Mixer Lobe Flow Modeling". The
first volume is entitled "Part I - Experimental and Analytical
Assessment” summarizes the basic analysis and experiment results as
well as focuses on the physics of the lobe flow field construed form
each phase. The second volume is entitled "Part II - Three
Dimensional Inviscid Mixer Analysis (FLOMIX)". The third and last
volume is entitled "Part III - Application to Augmentor Engines”.
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SECTION 1.0
INTRODUCTION

A forced mixer is a device that is used on gas turbine engines to internally
mix the hot turbine efflux with the cooler, lower velocity fan bypass or
secondary stream. The principle motivator for doing this on commercial gas
turbine engines is to reduce the jet noise associated with the high energy
core stream. Also, when designed properly, the mixer can also achieve an
increase in gross thrust while realizing noise reductions. Figure 1 shows a
typical separate and mixed flow nacelle. Note that to achieve the mixing, the
duct surrounding the engine must be lengthened. This adds weight, as does the
mixer and the larger centerbody plug. Normally, and particularly for short
range aircraft applications, these weight penalties offset the thrust
improvements. In addition, the increased difficulty of intergrating the longer
nacelle into the aircraft flow field without incurring interference drag
penalties, in the past has prevented launching new engines into service as
mixed flow nacelles purely on a performance basis. However, with increasingly
stringent noise regulations, mixers are being considered for future commercial
engine applications. Mixers are also being considered in military applications
as variable area devices for varying cycle match and as a way of spreading the
hot turbine exhaust ahead of afterburning flameholders. This report presents
an analytical method which has been developed for the mixer lobe flowfield.
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Figure 1 Typical Nacelle Exhaust Configurations



Conventional or commercial forced mixer geometries consist of periodic lobe
structure that can be described in terms of a number of geometric features.
Figure 2 illustrates two cross-sectional views of the lobe. The scarf angle or
Tobe cutback angle is used to reduce lobe length with increasing penetration
into the core. Scalloping is a cutout of the Tobe lateral surface used to
minimize lobe wall structural problems while promoting tangential mixing.

Lrip -

a) SECTION B-B

SECONDARY FLOW (COLD)

PRIMARY FLOW (HOT)

AXIS
: PLUG

b) SECTION A-A

Figure 2 Mixer Lobe Geometry Definition



For many years the mixer was designed using a trial and error experimental
approach, wherein_ limited traverse and performance data was ysed to refine
design concepts. *~> More recently, "benchmark" experiments 4,5 resorting

to high response and LDV instrumentation have probed the mixing chamber in an
attempt to explain the mixing process and its driving mechanisms. These
experiments confirmed that the mixing process is a viscous dominated process,
6 and that the primary driving mechanism is the secondary flows cenerated in
the lobed region of the flow. Several researchers have proposed a variety of
inviscid and viscid processes for producing the secondary flow, but as ye;, no
attempt has been made to analytically model them. Anderson and Povinelli 7,8
have lumped these terms together under a "qereric" vorticity label,
analytically simulating its effect in terms ¢f a vortex sheet distributed
along the lobe exit surface. Such an approact has been used to generate inlet
conditions for a viscous marching analysis in the mixing duct. The results of
these calculations, as seen in Figure 3, have been shown to realistically
simulate observed flow mixing patterns. The purpose of this paper is to
develop an inviscid analysis which, in conjunction with a lobe boundary layer
analysis, can predict the flow over the mixer lobes, thereby obtaining the

conditions needed to initiate a marching viscous calculation in the downstream
duct.

The analysis presented in this report is an attempt to examine one particular
jnviscid secondary vorticity generator called the “"flap" vorticity scheme
(Figure &4). In this model, the vorticity is associated with the periodic 1ift
distribution produced by the periodic lobe trailing edge. The feasibility of
an inviscid method predicting an observed level of flow penetration is
dependent on the axial flow component remaining attached to the surface.
Surface pressure and shed vorticity distributions will therefore be examined
to calibrate the method.
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Figure 3 Comparison of computed temperature profiles with experimental

data, Case 12C Mixer, T¢/Te = 0.74, Station 21.
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SECTION 2.0
ANALYTICAL APPROACH

A. OQOverview

The forced mixer consists of a convoluted lobe section and a mixing chamber.
Observations have proven that the lobe region is responsible for the secondary
flow generation while the downstream duct region to the nozzle exit plane
produces the resultant flow mixing. It is reasonable therefore to propose
zonal analytical approach, wherein regions are treated using locally
applicable techniques. The convoluted lobes can be viewed as a ring wing with
a periodic "spanwise" loading distribution, I'(e), as is shown in Figure 5. The
periodic lobe cambering produces a nonuniform loading distribution and a
corresponding shed vorticity field where strength varies periodically in e.
The shed vorticity is associated with crossflow velocity field ( secondary
flow) that "mixes" the flow as it is convected downstream. The vorticity is

then stretched and eventually dissipated in the mixing chamber through the
action of viscosity.

— e tam]

-

Figure 5 - Ring Wing Analogue of Forced Mixer

A complete inviscid treatment of the three-dimensional lobe region is still a
difficult problem, due to ceonetrical complexity, nultiple enerqv streans and
compressibility. Considering the lack of certainty ahout the relevant driving
mechanism for the secondary flow qeneration, it is appropriate to consider a
nore approximate analysis that can verify the magnitude of the flap vorticity
rodel. By neglecting the effect of wall boundary layer developrent, the flow
can be considered as irrotational regions separated by a vortex sheet,
Nownstrean of the lobe structure, the flows can initially considered to bhe
inviscid also, with the wake modeling all of the energy jump. An analysis in
terms nf a velocity potential, defined within each region, is therefore
possible.




The nixer lobe surface is characterized by two length scale ratios, whjch_
provide relative measures for the lobe height, axial and azimuthal variations.

_ AR _ MaR
17T 2 = 7mR

where N is the number of lobes, L the axial length and a R the lobe height
above some mean reference radius. For many current designs, the lobes are
axially slender (e1<«<l) and the local Mach numbers are low enough that a
small disturbance model may be introduced as a means for treating the salient
features of the Tobe mixer problem. In the next section a unique small
disturbance formulation will be developed that will analytically uncouple the
® variation and reduce the problem to the solution of a sequence of
axisymmetric problems. These problems can be solved by taking advantage of
previous experience 8 whereby the effects of power addition and "exact"
surface boundary conditions were modeled. In contrast to this earlier work, a
finite volume cylindrical grid formulation similar to that of Wedan and
South's 9 is used. This approach yields a straightforward treatment of
extremely general geometries. Although Wedan's calculations have been applied
to essentially symmetric geometries, the method presented below will have no
such restrictions.

The power contribution and Tobe loading result in a potential Jump [4] across
the wake shed from the lobe trailing edge. The corresponding induced secondary
flow has a net circulation I . By appropriately choosing the closed path of
integration over half a lobe, as shown on Figure 6, the circulation integral
reduces to

L= T8l g - (81,

(1)

Figure 6 - Schematic of Lobe Trailing Edge Integration Path



In the following sections, a potential analysi: for the forced mixer will be
developed. The complex three-dimensional problem previously described will be
linearized permitting an uncoupling of its e dependence in the governing
equations. Special treatment of surface and Kutta conditions however will be
needed to insure compatibility with the governing equations and the physics of
the problem, while also uncoupling their e dependence. Finally the treatment
of power addition within a potential format will be developed.

B. Potential Flow Analysis

The inviscid Tobe analysis will be applied to <he flow domain between the fan
and core flow discharge plane and a downstream plane in the mixing chamber,
schematically shown on Figure 6. The plane should be displaced sufficiently
from the nozzle exit plane so as to avoid nonl<near compressibility effects.

MIXER
M<i 1
—_—
\ r M<t
- - - ' 11! - I -
INLET | M:XER ' MIXING DUCT JET
LOBES AND NOZZLE PLUME

Figure 7 Mixed Flow Macelle 2nalysis Domain

The qoverning equation of mass conservation, applied to an arbitrary contrnl
volune in snace, vields

ﬁp?.?dA:O (2)

The nondimensionalized mass flux is defined in terms of a perturbation flow
from an upstream subsonic x-"aligned" flow as follows

oV = 1+Bz"‘x -1..x+‘sr'—i.r+%‘S



where g2 = 1 - M2, and g is the perturbation potential. Only the linear
terms have been retained in Equation (3). The expansion is made assuming that
all surfaces can be considered to have slender shapes in the streamwise

direction.

Separation of Variables and Mumerical Approach

Appropriate surface boundary conditions can be derived from a flow tangency
condition given by:

V- VF =0 (4)

where V, the velocity vector is given in terms of a velocity potential and F
is a general surface described in terms of the r, 6, x cylindrical coordinate
system

F(r, x, 8 =r -f(x,8) =0 (5)

If the velocity potential is assuried %o be a perturbation about the upstrean
axial flow and if tne perturbation velocity components are assumed small
relative to the upstream flow, then the axial perturbation potential
centribution can be neglected and the surface houndary condition reduces to an
expression for the surface radial velocity on a mean surface Rm(x).

f
)
or = fx V9
Ry

(6)

The perturbation or small disturbance approximation is equivalent to limiting
surface slopes to order e). This linearization of the boundary condition is
needed to render the overall problem separable, as will be seen shortly. At
first glance, it appears that the last term in Eq. (6) is of order ¢1,
however, no such perturbation restrictions has been imposed in the azimuthal
direction. The terms, fy, fg are known functions which describe the lobe

geometry.

Problen closure is ohtained by imposing a quasi one-dimensional analvsis for
definition of the inlet flux and a Kutta condition to uniquely set the net
circulation. In order to simplify the analysis, a cvlindrical coordinate
system orientation was used to simplify evaluation of the flux integral (2).



Normally, a body conforming or sheared Cartesian grid would appear the logical
choice for a coordinate mesh. By treating the mixer with a pure Cartesian
grid, the following analysis will be more tractable. Furthermore, one can also
substitute storage of large arrays with the additional complexity of irreqular
boundary/mesh intersections. Analysis of complex geometries in two- and
three-dimensions can be easily treated using such a scheme. The mixer lobe
geometry is assumed to have no scalloping and scarfing so that the trailing
edge will align with the mesh. Extensions of the analysis to include scarf
effects will be discussed in an Appendix. Consider the situation where the
general three-dimensional lobed mixer problem is perturbed about some mean
surface. It is possible to avoid analyzing the full three-dimensional problem
be recognizing that the flow is a perjodic function of the number of lobes.
Solutions to Equation (2) and any appropriate boundary conditions are
therefore assumed to be separable, i. e.,

g (x,r,e) = glx,r)h(e) (7

Combining Equations (2,3,7), the governing flux balance equation terms can be
appropriately separated into terms that are either a function of (r,x) or of e
alone,

2 f
rdr + rg_dr

X s

= -he =
/E;drdx /h de
AA r

where K is the separation constant and the E-i, N-S and aA integrals are
elemental areas evaluated in the (x,r) plane. The e component of Equation (8)
can be recast to identify the periodic nature of the separated variahle. The
solution for h(e) includes linear combinatiors of trigonometric functions,
where appropriate application of a symmetry boundary condition at the lobe
crest simplifies this to

h, = By cos(kle) Kk =0,1,2,...MH (9)
e
0

K2 (8)

where K = ke/ey, 8¢ is the half angle of the lobe (crest to trough), NH is

the number of harmonics used in the Fourier series, and By is a sequence of
unknown coefficients still to be determined. The k = 0 solution corresponds to
the axisymmetric solution limit. Since the separation constant can take on
multiple values, the potential assumes a more general form

b= 2 %My
K



The axisymmetric component of Equation (8) can be evaluated for an arbitrary

point in the flow field on integrals aligned to the cylindrical mesh (Figure
8a) to produce

/ﬁzgxk rdr + fgrk rdx - sz 1 gkdrdx =0 (10)
=k
E-W H-S AA

The last integral is a source term integrated over the enclosed area (drdx) .
Evaluating the flux balance Equation (10) on an arbitrary flow element yields

2 2 2
- [B8%9 M+ [8%g AL+ g A - (g A.- g, K" oK = o (11)
( X | w X Je E YT Ry A kFC
k=0,1, 2,...NH

where the r term has been approximated by its value of the center of each flux
cell.

Ay I AN
Ayl
. Re o ~ AgV
an (! X
A
w
Awt b—
AglL
— - x
Ag ]l x| Ag
{b) LINEAPMZED (AXI.) ic) WAKE ELEMENT
{a) GENERAL ELEMENT SURFACE ELEMENT

Figure 8 - Cartesian Flux Volume Element Descrip*ion

Equation (11) is a discrete approximation whose subscripts refer to the
respective faces of the elemental volume shown on Figure 8a. Central
differencing of the flux terms and collecting the contributions at each node
results in a tridiagonal equation system in terms of aijk-

10



(12a)

where
A, = Rs (12b)
J Ar
B, = - [gz (A + Aw) +1 (AN + AS)] N, (12c)
J AX Ar r..
i]
c, =M (124)
J Ar
A, a2 A o2
My = B0 g 2P Tin gk (12€)
AX AX

Closure to the problem formulation requires application of boundary conditions
on the boundaries of the domain of integration. Referring to the computational
outline in Figure 7, the no flow condition will be imposed on all solid
surfaces. The upstream flows normally are defined in terms of the engine
discharge conditions, but flow continuity (Kutta condition) at the lobe
trailing edge necessitates an alternate approach to avoid overspecifying the
inlet conditions. These boundary conditions will be explained in the following
sections.

Surface No-Flow Boundary Condition

In a flux formulation, the no-flow boundary condition is implemented as a zero
flux condition on all solid surfaces. The flux balance for an element
intersecting the three-dimensional lobe surface is not separable along the
lines previously derived. In order to render the problem separable, the
boundary conditions must be linearized in tre o direction resulting in a
modified boundary condition with a source-like term applied on a mean
axisymmetric surface, Rp{x). The surface intersecting computational element
effectively looks like Figure 8b. The flux kalance on such an element must be
modified by an additional source term representing the “surface” flux (gp)

in the r direction,

2 — 2
ﬂ ] rdr+fg rdx—fg rdx-ng drdx = 0 (13)
f Xp " "k 7 kK =
E-W N-S Rm AA
k =1,2,...NH

1



The areas in the integrals describe only the external portion of the cell on
“he side and azimethal (%A) faces.

By applying the mean radius approximation to the contour, one can also express
the Tobe surface in terms of separahle variables, i. e.,

NH NK
fx,0) = R (x) + El A (X) ()= ijo Ag(x) h (o) (14)

where A o(x) is the axisymmetric modal shape and may be used as a mean radius.

A Fourier moment analysis couples the e dependence of the contour with dependent
variables. The unknown coefficients Ak are determined by using the angular
definition shown on Figure 9 and arbitrarily defining the potential within a
constant Bg.

%
A (X)) = _ltjn f(x,e) cos (kre \de
% )
0

Figure 9 - Domain Definitions for Moment Analysis

Substituting the modal description of the geometry into the no-flow condition
and taking advantage again of the orthogonality of alternate Fourier modes for
the gk's on the boundary, reduces the surface boundary condition to a flux
along a mean surface, which is given by

grk(x, R)= N (x) + %_Rri ? zn; An (X) 9;0x,Rp) [‘Sk,n-j 'Gk,n*‘j] (15)

k = 0,1.2,...NH

12



where s43 is the Kronecker delta function. The first term on the right side

is the primary contribution to a given mode. The second term represents a
coupling of the different modal solutions due to the product fgBy in the
no-flow equation. If parameter ep is small, this term is absent. Observe

that Equation (15) is a mixed type boundary condition. Therefore, the solution
algorithm cannot explicitly determine the gy{x,r)'s from the given boundary
conditions. This problem of coupled modal equations is alleviated by Tagging
the alternate modes in the iterative solution that will be discussed shortly.

The modal solutions for the functions gg(x,r! can be discriticized along to
the cylindrical mesh to yield

2
ﬁhax - K7 g, AR =N (16)

R
m

Ayt B9y Pe T 9, M9 As 9.

ks
k = 0,1,2,...MH

k

where A denotes the exterior portions of the areas of the intersecter cells
and AR the exterior area of its azimuthal face, see Figure 8b. In general, a
surface element includes a region of flow and a region interior to the body.
Along the mean surface however, an element includes a core flow and fan flow
region. Correct flux balancing in each region is expedited by tracking the
potentials of each flow separately across the surface.

Discriticizing the boundary Equations {15) and (16) is complicated by the
mixed mode term in the "surface" flux. in order to solve the equations
numerically, the coupled term is introduced into the Uj i right side term
and lagged in the iterative solver, i. e.,

G
jk = J,k+ R_m §X )\k+ _% (17a)
2R
m
B. =8, + Rm sx G (17b)

1
2
2Rm

where G1 and Gz are the coefficients from Equation (15) of the kth mode
and the mixed modes (minus the kth term) respectively.

Solution Algorithm

The governing equations and becundary conditions reduce the analysis problem to
a system of linear algebraic equations in terms of the grlx,r)'s and
correspondingly the velocity potential. These equations are solved iteratively
using a successive line over-relaxation procedure (SLOR). To optimize the
calculations, a grid halving algorithm is utilized. In such an algorithm, the
previous coarse grid solution is interpolated onto the next or finer grid as
its initial guess. The solution convergence on each grid is monitored by

13



tracking either the residual, defined as the normalized error in the mass
conservation equition at the nth iterate, or the Jjurp in potential at the
splitter trailing edge. This latter variable is the "flap" vorticity discussed
in the introductory remarks. Typically the residual is a monotonically
decreasing function that, in a SLOR scheme, achieves only a two orders of
naginitude reduction per grid. Finally, the results are displaved in terns of
the pressure coefficient defined for each stream relative to its own upstrean
dynaric liead.

Inlet Flow Boundary Conditions (Conpound Choked Flow Analysis)

Flow requirements for cruise engine operating conditions are typically
determined by engine power settings as well as hy inlet and nozzle exit areas.
Analvsis of the localized mixer/nozzle prohlem requires a completely specified
set of boundary conditions; however, precautions must be taken to avnid
specifying inconsistent fan and enqgine core flow conditions such that the
Kutta condition at the lobe trailing edge will not he maintained. For exanple,
if the onset flows each were specified in terms nf Pgs Tg and i1, the

probler could be over-defined. Use could be made of the nozzle exit floy
conditions in conjunction with the wake contact surface matching conditions to
deternine uniquely the fan and core flow requirements. The problen is further
complicated hy trying to insure that the analvsis would include hoth choked
and unchoked conditions at the nozzle exit plane. Table I details duct
operating conditions for several mixed flow installations. The tahle indicates
that the nozzle exit operating condition is dependent on the mission profile
of the aircraft and that choked and unchoked conditions are indeed possible,

l
’ Po2, Toy, Moo

Figure 10 Dual Stream Choked Flow Domains
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Nozzle

TYPICAL MIXER DUCT OPERATING CONDITIONS

Tamb

Pamb

aMIX

Pon/Poo

Condition

TABLE I

(Standard Day)

£3
SLTO
543.7

14.7

625.6

1157.2

1499.0
21.65

36.01
908.0

737.3
22.20
85.04

1.50

Unchoked

JT8N-09 (Super S0)

SLTO

519,
14,

627.
24,
299,

1276.
25.
161,

1080.
648,

1096.

264,

Unchoknd

15

.76
.0a

.68

393.

3

560.

120.

1221,
10.
70.

1080,
648,
1096.

814.

D

92

Avg. Cruise

8

.46

.33

.60
.0a
.78

Choked

JT15D

(no scallon)

SLTO

519.
14,

602.
22.
55,

1534,
21.
21,

173.
13n.

304,

91¢,

0
7

04

.46
.0A

.46

Unchol.ed



The analysis developed is based on a compound nozzle model, wherein the
curvature induced traverse pressure gradients are neglected and the static
pressure is only a function of axial position,. Approximating the nozzle exit
flow by a quasi-one dimensional flow, the continuity equation for a single flow

d (pvA(x)) = 0 (18)
and the isentropic forms of the energy equation can be combined to give
dA = A 1 - 1\d 1np (19)
dx 0% 62 dx
This equation has been generalized 1l for multistream flows as follows
Ais A /1 - 1\d 1np (20)
dx~ 7; QQ dx
i

where quasi-one dimensional matching conditions across each dividing

streamline prevent mixing but allow pressure communication (pj=p) across the
flow. But area continuity

br= TA
i
therefore,
P A L vd g
dx— i dx dx

where v , the compound flow indicator is

vo= > A /1 -1 (21)
1"51'(1\42
B
Reference 10 also demonstrated th

at the nozzle flow exit state corresponds
to the sign of v, i.e.,

>0  compound subsonic
0 compound sonic
0

compound supersonic

Equation (21), in conjunction with the definition of the local mass flows, in
terms of their stagnation properties,

Wy =W, (Ai’ Pss poi, Toi) (22)

16



and the isentropic relation are sufficient to provide closure of the problem.
For a dual stream flow, equation (21) becomes

n n

R I J (23)
Y1 Min Y2 Man

The superscripts refer to axial locations defined on Figure 10. This can be

further reduced using equation (40). In particular, assume that the flow at

the nozzle plane is subsonic, then

n n
P = Pl = Py

and the compound flow parameter becomes

n n
N | [P T | o+ R S 1] (28)
7| (7o) or o PN
" ( 01 vy -1 /2 (T2 v, )
Po sz-l Pe

The value of v is not determinate in its present form, since A] , A2 are
not known. An iteration to determine these areas follows.

(a) Guess value for pT for given Py, Aln, AT, As.

(b) Calculate w, from following equation given in Reference 11.

- *
W, = [w]l [F (Tor, Toz, A1, A+ Po1, Poz, P_ )] (25)

m
(c) Determine the new value of P; from equation (22)

m m
Wy = Wy (Ay Py Pon Too)

but under relax update according to the following

mom moom
P1 P1+°(P1"P1)

and continue iteration until a PT within given tolerance.

(d) Determine

m m
wp (A P Pyt Tor!)

E3
—
1)

17



(e} Determine A1 A2 using equation (22), i.e., solve

n

T for A1

Wi o= w, (Al D) )
1 1 1,50, 01, 01

(f) Calculate v according to equation (21).

If v<o, then the solution is complete and the flows are defined in terms of
the given upstreams data and the flows determined in iteration (a-f). If v=o,
then the flow is compound choked and Pe is not p,_.

For compound choked flow, a dual iteration is performed to find the exit
pressure for a convergent nozzle, and the splitter exit plane static nressure,
In this case, it is known that the compound flow indicator v = N, An initial
guess for the primary and secondary nozzle flow areas is given by:

n n S /S
Al = At (Al/At)
n
A
Using equation (24) with p_ replaced by pe , an iteration is performed
until a value of pe is obtained which gives v = 0. Now the primary and
secondary flows can be computed from the continuity equation (22) at the exit.
The secondary flow continuity equation is then used to compute the splitter
exit pressure, which is then used to compute a primary splitter exit flow. If
this flow does not match the primary nozzle flow, a new primary and secondary
nozzle area are computed usina the primary splitter exit flow, and the entire
choked flow calculation is repeated until the flows balance and v = 0.

n S /pS
= A (AZ/At)

Finally, with the flows, pressures and *emperatures in hoth streans known, the
raeference lach numbers at the inlet nlane for each stream are computed fronm
the continuity equation (22) and the isentropic equations. The velocitv ax of
each straan is therefore directly known. In the present analysis, it is
assuned that gx = gy, while all higaer nodal derivatives at the inlet nlane
are identically zero.

Kutta condition - Powered !lake Analysis

Treatment of the flow downstream of an arbitrary body is complicated by the
unique interaction of the streamn from above and below the body. Even in
nonpovered situations, the 1ift of flow turning is reflected as a jump in
potential convected from the sharp trailing edge. This junp will remain
constant and will follow the trailing stagnation streamiine. In the situation
of power addition, streams are assumed locally irrotational with different
enerqv levels. They inviscidly interact through the local potential jump that
is determined from the basic consistency conditions across a "contact
discontinuity," i.e., static pressure match on the wake or vortex sheet Suw and
streamline sinpe continuity

e

VvV.7P=0 onSs S,
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Classical linear theory assumes the wake lies along a constant radius surface
(Rm) from the trailing edge, and the streamline slope condition is relaxed.
Flow is permitted to cross through the constant radius. Consistent with the
surface boundary condition formulation, the wake can be modelled by a mean or
axisyrmetric surface that varies with axial position.

e — mean radius approx.
______,//ff—-_--.-~m--n~::;:;::;:~—— wake streamline

Consider the mass flux balance on an element that includes an arbitrarily
oriented mean wake streamline (Figure 8c). Applying the flux balance (16) to
the upper and lower portions of the (ij) element results in equations that
assume a mass flux can exist across the given wake contour, thereby allowing a
lagging of the wake path in the iteration cycle. Adding the conservation
components together will produce an equation for the ijth element where the
flux contributions across the wake gp u,L jdentically cancel each other

out. If the potentials on both sides of the wake are defined in terms of a
mean potential and a wake jump [gx] as follows

- 1 u L
ik =7 (9igk * 9z (26a)
u L
[gk]ij = (gijk - gijk) (26b)
the flux balance for a wake element becomes
L - u Ly, = u _ywy L u L
AS T gkt (BB 95 gt G Sigeik T Mok Mg Dadiy (B - B
K (26¢)

k =0,1,2,... NH

This Equation corresponds to one row in the general (JMxJM) tridiagonal matrix
for the ity line,

Ao B.t, C.t
j-1 7j-1 7j-1 (27a)
L L, pU u
Aj (Bj Bj) Cj
Aj. Bq Cj.

19



The structure of the matrix is equivalent to the following (JM+1) x (JM+1)
tridiagonal matrix

As Bsi1 G501
L L
Aj Bj 0
u u
0 Bj Cj (27b)
Ase1 Bji1 Cj+1

The two new (ijth) equations are similar to individual wake element flux
balances with the added proviso that the A terms are zero. This is equivalent
to assuming that the wake is a solid boundary since all boundary areas are
assumed by the program logic to be zero. Under such a format, the program can
automatically treat these constructed equations in the algorithm and the real
wake equation is arrived at by contracting or adding the appropriate equations.

The matrix solution for the ith row needs an algorithm for defining the
Lgxd and for updating the wake path. The potential jump, [gx] is obtained
from the constraints of static pressure and streamline slope continuity.
Expressing the flows relative to the same reference freestream static
pressure, the pressure match condition reduces to

M2
C,=YL L ¢+ 24P (28)
TR Loy 2
u' u ]

The pressure coefficient Cp can be taken from the general isentropic
definition or from a formulation consistent with our linearized algorithm and
thus separate out the axisymmetric component on each mode T

Pk
= - [a]
Cbk(x,r) = -2 gxk(x,r) (29)
The streamline slope matching conditions, along the general wake contour

L
6 $

r - r (30)

2

1+ Bu di 1+ 32¢xL

can also be simplified by assuming that the axial velocity flux contribution
is small relative to unity, then

ﬁg = éL or for each mode gg = gL



If the slope
dr

— = z o0,
dx "k
the wake follows the constant radius approximation.

In order to ob*ain closure (Kutta condition) “or the problem an additional
assumption is needed. Although the global Kutta condition,

Cpu = CpL (313)

needs to be maintained individual modes need their own boundary condition. It
is proposed therefore that each mode satisfy

9, = 9y (31b)

and therefore equation (31) is implicitly satisfied. Equations (28b), (26a,b)
are then combined tc determine the potential jump

[gk] X = El 50k + Ezgxk (32)

Ideally, the jump in potential along the wake is obtained by integrating out
axially from the trailing edge along the mean radius as follows

L9 ] 15 = Ep Bok (X-Xpa) * Ep Gy * {[gk] - Ezak} TE (33)

In the entire preceding discussion, the slope was assumed given. In actuality,
the path is evolved as the program interates. A simple streamline tracing
procedure could be used to periodically update the wake path. Another
attractive approach would be to drive the slope using the nonconservation over
the local flux cell.

Equation (1) can now be re-expressed in terms of the separated variables as
follows

NH/2 _
D= 4T (Gyble - Loy Wy (34)

where only the odd rodes contribute to the net induced circulation field.



C. Geometry Definition

General lobe contour definition can be a complex problem even if scalloping
and scarf angle cutouts are not included. Current commercial designs fall
within three general categories: radial sidewalls, parallel sidewalls,
circular arc sidewalls with the remaining segments of the lobe defined in
terms of tangentially intersecting circular arc segments. Considering the
periodic nature of the analysis formulated in the previous section, one must
Timit the geometry capability to axisymmetric duct wall configurations while
the lobe cross-section must be limited to radial sidewall geometries to avoid
multiple valued structures. Using this approach, a mixer centerbody and fan
cowl can be defined and replicated using the BYU Movie Three-Dimensional
hidden 1ine graphics program, to produce Figure 10,

Figure 11 Three Dimensional Display of JT8D-209 Mixer Geometry

A neasure of the feasibility of the Fourier decomposition method can he made
by considering a finite nunber of harmonics and counparing the reconstructed
lobe versus the given lobe definition. A equal angle serias construction

permits use of fast Fourier scheme (FFT) to evaluate the Fourier coefficients.

The reconstructed lobes are shown in Fiqure 12 for NH = 1, 3 and 9. The base
contour was generated analytically using 50 points. The modal analysis,
however, does not demonstrate the perfect aqreement. The largest excursions
occur at points where the curvature changes instantaneously. Uhereas this
aspect is cormonly found in square wave reconstructions, where a larae number
of riodes must be used to obtain an accurate wave representation, the slight
Tobe contour mismatch should not be significant in establishing the "flap"
vorticity field. The sensitivity of the analysis to the number of modes,
however, will he shoun below to be a critical factor in determining the mean
radius, the leading term obtained from the FFT analysis.
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Figure 12 Comparison of Fourier Modal Reconstruction of JT8D Lobe
Near Trailing Edge Plane



SECTION 3.0
RESULTS AND DISCUSSION

The analysis (FLOMIX) described in the previous section has been applied to
several lobed mixer configuration. When A = 0 (k=1, 2,...NH), the zeroth
mode solution will describe the powered flow over a completely axisymmetric
configuration. An initial calculation of a planar mixer lobe in a straight
duct is presented to calibrate the analysis. Planar conditions are simulated
by considering an axisymmetric geometry at large radius. In such a situation
comparison calculations can be made with an available analytically constructed
solution that simulates an isolated Y1anar mixer lobe using distributed
doublets along a mean planar surfacell (PLANMIX) . Figure 13 shows a sideview
of the configuration analyzed. The duct walls are defined sufficiently far
from the lobes (H = 8") so that any interactions would be minimal. Numerical
calculations demonstrate that there is no potential interaction effect due to
these walls. The lobe surface in both calculation methods is generated from a
single cosine wave, therefore a single modal (NH = 1) solution models the
flowfield. In this study no power addition effects are considered. Predictions
are presented for the reconstructed (as a function of e) components of the
perturbation velocity on the lobe surface. Figures 14(a), (b), (c) show
comparison calculations between FLOMIX and PLANMIX the three components for
several azimuthal cuts running from the lobe crest (8'=0) to the inside of
the lobe trough (6'= 1.0). The axial scale runs fron the lobe leading edge to
its trailing edge. The profiles reflect the effect of the linear theory
approximations at the trailing edge, i.e., the Kutta condition is satisfied
and the axial velocity perturbation qoes %0 zero. Althouqgh bnth methods are
based on Tinear theories, sliqht differences shnuld he expected since the
planar analysis is an inverse method evaluating sinqular inteqrals numevically
as input while the present rethod is a finite difference flux volume scheme.

LOBE HEIGHT
4 INCHES

TUNNEL HEIGHT
H=8 INCHES

-—

—— LOBE LENGTH =10 INCHES ——~]

Figure 13 Sideview Representation of Planar Mixer/Wind Tunnel Geometry
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Figure 14a Comparison Calculations of Axial Velocity for a
Symmetric Planar Mixer in a Planar Duct
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Figure 14b Comparison Calculations of Vertical Velocity for a
Symmetric Planar Mixer in a Planar Nuct
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Figure ld4c Comparison Calculations of Spanwise Velocity for a
Symmetric Planar Mixer ir a Planar Duct
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ilore realistic applications of the method can be found by considering flight
type configurations. In particular, two specific powered applications are
presented due to thg “benchmark" nature of their experiments: (1) the Energg
Efficient Engine (E®) configuration 29, which is an 18 lobe forced mixerlZ,I3,
and (2) a JT8D-209 12 lobe forced mixer®. The E3 configuration, shown in
Figure 13, is well suited to the present formulation in that although it was
modeled for a modern high bypass engine, it was designed specifically for code
verification, i.e., no scalloping or scarfing of the lobes was used and
extensive surface static pressure surveys were made in the lobe region of the
mixer. In contrast, the JT8D-209 forced mixer is a higher penetration 12
scarf angle design typical of first generation low bypass applications. While
this geometry is not strictly suitable for code comparison, the experimental
data included LDV profile measurements of all components of velocity at the
Tobe trailing edge. Satisfactory modeling of these lobe cross-sections, even
for the JT8D-209 high penetration lobe (Figure 12) is possible with only ten
Fourier terms, however, a more definitive approach to defining NH is given
below.

nLoTE \
C—,—/”/"—_
1 1 1 1 )
TE VIEW SIDE VIEW

Figqure 1% Schentic Renvesentation of £3 Confiquration 7?9 Lobed lixer
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Postprocessing of the solution produces surface Mach number definition and
quantifies the level of “flap" vorticity or circulation through the potential
jump at the lobe trailing edge. The surface solutions, although strictly
determined along the approximate mean surfaces can be interpreted, to first
order, as solutions on the actual surfaces. By examining the potential jump
variable, an effort will be made to separately quantify the contributive
effects of mean flow turning, power addition and lobe aspect ratio
(penetration angle) on the overall mixing process.

Numerical solutions initially have been made for the E3 configuration 29

lobed mixer and comparisons have been made with test data measured on a full
scale model at FluiDyne Engineering Corp. The experimental cruise flow
conditions were characterized by power settings* of APy/Pys = N.094 and
ATo/Tos = 1.50. Computational simulation of the measured flow conditions

is obtained by setting the upstream total conditions in each stream as well as
settings the exit static pressure. The quasi one-dimensional choked flow
analysis correctly sets up a choked flow at the nozzle exit plane and sets the
inlet flows and Mach numbers to within 10% of those measured by the facility
flowmeters. Solution accuracy, relative to the level of modal approximation,
however, is to be answered.

Table I summarizes the individual modal potential jumps [gyxl obtained from a
series of calculations in which different levels of modal approximation (HH =
0,1,2,3...) were used to simulate the E3 mixer. The calculations were
initially made for an axisymmetric configuration where the effect of flow
turning of the mean radius (-0.093) and power addition (-0.012) could be
identified. With the mean radius having a positive trailing edge angle, these
results demonstrate that a positive circulation corresponds to a clockwise
rotation. The tabulated calculations variec both the number of harmonic terms
(NH) used to represent the o dependence of the velocity potential and the
number of Fourier terms (NF) used to represent the e dependence of the lobe
surface. The tabulated results indicate thet while each approximation produces
different total and modal potential jumps, the individual modes approach fixed
values as more terms are included. Although the higher modal solutions
converge much more rapidly than the leadina terms, the acdditional storage
required for these higher order terms is impractical. A study of the governing
differential equations indicates that the rodal couplina is extremely weak for
the axisyrmetric mode and that its primary driving term is the mean radius,
determined from the Fourier analysis. Since higher order solutions (MH large)
contribute 1ittle to the total circulation field, one can neglect *hese
equations while retaining the addition terms for an improved Fourier (NF)
definition. For example, calculations with NH = 3, NF = 5 yield the same modal
jumps as MH = 5, NF = 5. In the comparisons described below the solution
parameters NH = 5, NF = 18 were used as representative of an "asymptotic"
solution.

* The subscript s refers to reference conditions in the secondary or fan
stream.
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TABLE I. POTENTIAL JUMP COMPARISONS [gy]

Power Total

NH MF Addition Jump k=0 1 2 3 4 5
0 axi (18) No -0.093 -0.093
0 axi (18) Yes -0.118 -0,118
1 1 Yes -1.396 -1.328 -0.068
3 3 Yes -0.527 -0.467 -0.084 0.018 0.006
5 5 Yes -0.353 -0.292 -0.C87 0.013 0.007 0.006
3 5 Yes -0.367 -0.293 -0.087 0.013
5 S Yes -0.263 -0.187 -0.088 0.008 0.009 -0.004 -n.003
Asynptotic Value -0.191 -0.118 -0.089 0.008 0.N10 -N.00N2 -N.003
(MH=5, NF=18)
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Figure 16 Surface Mach Numter Comparisons for E3 Duct Walls at
Lobe Crest Orientation
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Ficure 17 Surface Mach Humber Comparisons for £3 Mixer Lobe at
Lobe Crest Orientation
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Figure 18 Surface Mach Number Comparisons for £3 Duct Walls at
Lobe Trough Orientations
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Figure 19 Surface Mach Number Comparisons for E3 Mixer Lobe at
Lobe Trough Orientation

Surface lach number calculations, compared to measured data within the lobe
region, are shown on Figs. 16-19. Figures 16, 17 present comparisons made for
an azimuthal cut aligned to the lobe crest while Figs. 18, 19 show comparisons
for the Tobe trough orientation. Initial calculations indicated that the
quasi-one-dimensional boundary condition set the flow and inlet conditions
approxinately 10 percent too high, therefore, a nozzle flnay coefficient (€,

= 0.94) was introduced to adjust the inlet flow conditions. Mith this
nodification, the figures show substantial agreement bHetueen analysis and
data. The axisymmetric fan nozzle and centerbody comparisons shown on Figures
16 and 18 show little angular variation and are largely one dimensional in
behavior. The lobe surface solutions, however, show substantial e dependence.
A major discrepancy is noted near X/L = 0.50, the cross-over point for the fan
and core flows. A Mach number pulse at this point is produced primarily by the
first modal solution in a manner similar to Figure 12a, observed in the
previously discussed planar mixer case. Viscous interaction effects should
decrease the analytically predicted qradients and reduce this mismatch.

The FLOMIX analysis has also been applied to the JT8D-209 lobed mixer
configuration. This configuration was previously studied at UTRC in a scaled
model test but still simulating the hot flow (APo/Pyos = N.044, ATy/Tos

= 1.617) full scale engine cruise conditions. Analysis of this configuration
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is complicated by the additional effect of a 12° scarf angle. While no surface
or flowfield details were measured within the lobe region of the duct, Lny
measured velocity components were obtained at the lobe trailing edge and in
the mixing duct. Any analysis comparison with data, however, requires an
interpretation of the small disturbance solution off the mean radius.
Examination of the Mach number indicates that axial component is largely
one-dimensional and has little variation with radius, within each stream.
Displacing the flow relative to the physical lobe trailing edge results in
comparisons for the radially measured axial component of Mach number, shown on
Figure 20 at the crest location and on Figure 21 for the trough location. Poth
figures show substantial agreement between analysis (NH = 5, MF = 9) and
experiment.

x . .
s 0.30 o 'Y . *
N \‘.\ ]
] C *.__._,l/1
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X 0.20f
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Figure 20 Comparison of Axial Mach Murmber at Lobe Trailing Ldge
Plane for JT9D-209 Mixer, Crest Orientation
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Figure 21 Comparison of Axial "ach Mumber at Lobe Trailine Edge
Plane for JT8D-209 Mixer, Trough Orientation
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A fuller interpretation of the flowfield at the lobe exit plane must be
inferred from slender body theory 14,15, whereby the outer potential is
determined as a function of x from the solution of an axisymmetric problem and
the inner potential is determined as a solution of the two-dimensional
Laplace's equation in the cross plane (r,e). This philosophy will be used with
the modal axisymmetric solutions to infer the cross flow or inner solution by
viewing the potential jump as the doublet source equivalent obtained from the

outer solution,



SECTION 4.0
ANALYSIS IMPLEMENTATION

A. Geometry Definition

A generalized procedure to obtain the coordinates of an arbitrary forced mixer
application can be extremely complex. Although an engine centerbody is usually
an axisymmetric surface, the outer cowl, which is initially also axisymmetric,
can transition to a high AR rectangular cross section at the nozzle exit plane
(Figure 22). Commercial applications are typically fully axisymmetric, but
military applications can include such ducts. Superellipsoidal coordinates can
be used to analytically approximate such circular to rectangular transition
ducts.

Figure 22 Engine Exhaust Transition Duct.

Lobe contour definition is however a more complex nrohlen. Even if scalloping
and scarf angle cutouts are not modelled, 1obe contours can still be very
general. Current commercial designs fall within three aneneral categories;
radial sidewalls, parallel sidewalls, circular are sidewalls (See Fiqure 23).
The remainina seqments of the lohe are then defined in *erns of tangentially

intersecting circular arc segnents.

/ \

Figure 23 Typical Lobe Cross - Section Contours

33



AL E TN

n
v ' on

S 1T TYALITY

PAGE IS

Considering the periodic naturc of the analysis formulated in the previous
section, one must 1imit the geometry capability to axisymmetric duct wall
configurations. The lobe cross-section must also be limited to radial sidewall
geometries to avoid multiple valued structures. Lobe coordinates are
analytically evaluated by dividing the lobe into three segments (shown on
Figure 24).

Figure 24 Analytical Breakup of Radial Sidewall Lobe

Using this approach, the baseline JT8D-209 model 12 mixer is defined interms
of the radii given on Table II, where the appropriate radii and the sectional
Tocations are shown on Figure 25. Finally, after generating the mixer
coordinates, one can replicate the lobe and display, using the BYU Movie
Three-Dimensional hidden 1ine graphics program, the lobe portion (Figure 26)
as well as the complete forced mixer configuration (Figures 27, 28).

Table II - JT8D-209/12C Lobe Mixer Definition

AXIAL SECTION A B c D E F G H I J K L M N
X .655] .951]1.236| 1.593 | 1.837 12.093 | 2.284|2.713 3.141 3.570 | 3.998{ 4.306 | 4.613 | 5.399
Rran vatiey 2.729|2.719{2.694 | 2.642 | 2.593 [2.517 | 2.449 | 2.276 2.103 1.929 | 1.756 | 1.632 | 1.508 | 1.190
Rerown 2.50312.503{2.503 | 2.503 ] 2.526 {2.593{2.602 | 2.831 2.994 ) 3.105 | 3.160( 3.167 [ 3.146 [ 2.997

D .301 .313 .310 .296 .279 .258

E Rrv Tangency Radius 2.512 2.295 | 2.088 1.891]1.757 | 1.628

F Rirean .313 .313 .13 .313 .313 .313

G Rican = [Rev *+ Reronnl/2 2.243 | 2.243 | 2.243 | 2.243]2.243| 2.243
H Rerawn .299 .274 .250 .235 .233 .239

J R Crown Tangency Radius 2.56 2.760 | 2.902 2.975{2.984 | 2.957

K Rrev Origin Radius . 963 . 354 . 303 .247 .207 .197 .173

L R Crown Origin Radius . 300 . 300 .278 .255 .24} .239 .244
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Figure 25 JT8D-209/12 mixer (-12° scarf angle) Geometry Description
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Figure 26 3-Dimensional :lovie Plot of Input-Generated JTED-209 4ixer

"

Figure 27 3-Dimensional Movie Plot of Figqure 23
Complete JT8D-209 i1ixer
Geometry

2-Dimensional lovie Plot of
Complete JT3L-209 lixer
Geometry (Lookina lUpstream)
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Finite Fourier Series Decomposition

Lobe contours are constructed using tangenzial intersection of radial Tines
with a variety of circular arc segments. The contours are assumed symmetric
about the either the crest or trough of the lobe. The half lobe is then
subdivided into NINT equal angle segments. At these points (Rj,e4) the

lobe can be represented by a finite Fourier series, where the number of
Fourier Terms is determined by the (NINT+1) constraints. A measure of the
feasibility of the Fourier decomposition method formulated in Section II can
be made by considering a finite number of harmonics (NH = NINT/2) and
comparing the reconstructed lobe versus the lobe definition array from the
given input data.

The definition of an arbitrary point on the lobe surface is given by the
following series

[Ak cos (ka;) * Bk sin (kaj)| + R,
where

aj = 21r9j / 290 = uej/ao 0 gej <20°

and ej, 65 are shown on the figure below.

(R;. 0,)

9
\ I'4
Evaluation of the unknown coefficients is possible by forming 2NH moment

relations that take advantage of the orthogonality of the basic Fourier
functions,

e.g.

27 NH 27 27
~’25F cos(ia)do = E:l [- Ak cos (ko) cos( ia) da + ,’hk sin ka)cos(id) da]
0 o 0
i=20,1,2,...NH



Using trigonometric integral identities to simplify the above equation one
obtains

2n
B =T AF sin (ka) da k = 0,1,2,...NH
0
2n
A =T AF cos (ka) do k = 0,1,2,...NH
o]

An equal angle series construction permits use of fast Fourier scheme (FFT) to
evaluate the unknown coefficients. A more reasonable contour definition,
however, can be obtained by using an equal arc length definition of the input
data. In such a formulation, the coefficients must be evaluated using a more
conventional matrix inversion procedure.

The truncated Fourier series has been applied to the three lobe families shown
on Figure 23. The 1imit on angular double valuedness for the parallel and
curved side wall geometrics was eliminated, only for this geometry study, by
using an equal arc length decomposition of the Tohe surface. The recnnstructed
lTobes are shown on Figures 29, 30, 31 for NH = 3 and 5. The base or reference
contour was qgenerated analytically using 50 points. One can see that
relatively few modes are required to produce a good surface representation of
the parallel and curved side wall cases. The radial analysis however does not
demonstrate the same degree of agreement. The largest excursion occurs at
points where the curvature changes instantaneously. This aspect is commonly
found in square wave reconstructions, where a large number of modes must he
used to obtain an accurate wave representation. The relative mismatch is,
however, enhanced by the magnification of the abcissa scale.

The level of error should be compared however not only to the analytic contour
reference but also to the manufacturing tolerance of the mixer. Mixer lobes
can be accurately fabricated by three-dimensional machining of a solid mass,
however, this is pronibitively expensive. Our JT8D-200 mixer experience, also
used for the JT8D benchmark mixer (Ref. 5), shows that a typical mixer can
have dimensional variations as large as 0.4 inch. For example, a calibration
of two adjacent lobes on the benchmark mixer (Figures 32, 33) shows
substantial lobe to variation. It therefore seems reasonable that only 3-5
modes will be necessary to provide adequate three-dimensional contour and flow
reconstruction. In production practice the lobe-to-lobe variations seem to
compensate as long as lobe flow area is maintained.
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Figure 29 Comparison of Fourier Modal Reconstruction of Lobe
Contour for Curved Sidewall Model of JT8D Lobe
at STA 13,X/L= 93% (....X Fourier, o Analytic)
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Figure 30 Comparison of Fourier Modal Reconstruction of Lobe
Contour for Radial Sidewall Model of JT8D Lobe
at STA 13,X/L= 93% ( ....... X Fourier, 0 Analytic)
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Figure 31 - Comparison of Fourier Modal Reconstruction of Lobe
Contour for Radial Sidewall Model of JT8D Lobe
at STA 7,X/L= 45% (...X Fourier, o Analytic)
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Figure 33 Circumferential Profile of JTE8D-209 Raseline Mixer
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B. Linking Diagram for FLOMIX Program

MAIN ~—

—ECHO

— FCRMIX RWINPT
PLOT rAREA SPLIT RADIUS
LOBGEN GEOM ARC
EQANGS [RA01US
FOREGO SERIES RFAST FAST
FORVAL
REPLIC PLOT
ouUT3D REPLIC PLOT
LAMDAS PLOT

— EBC ——————— HAF

— GRID

—— XRSUBS

—BCSETS

— PGUESS

— PLTGRD PLOT

— INITL

—— FARFLD

—- SLOR MATRIX BCABCW
TRIDI EPDEAE.CN

PLUME

— RESCL1 ———— MATRIX

— UPDATE ~———— EXTRAP

— OUTPUT PHIPLT PLOT

ECPPLOT — PLOT

FLDPLY ———————— PLOT

— RECOMB ——— PHIPLT ~——w—— PLOT

— PJMPLT —— PLOT

— TEPLAN



C. Input Description for FLOMIX Program

The format of each input item is identified by type.

Type
A

Example

TEST CASE

-23.64

-.2364 E2

42

Description

Alphanumeric: Any keyboard characters are

specitied within the given field.

Floating Foint: Decimal fractions including

decimal paint are specified anywhere within
the given field. Positive values are assumed
unless the value is preceded by a minus sign.

Scientific notation may be substituted by
specifying a decimal mantissa {as above) and
a right adjusted base 10 multiplier preceded
by a symbol E.

Integer: Right adjusted whole numbers (no

decimal point) are specified within the

given fie'd.

Blank F or I fields are set equal to zero, hut blank A fields are set equal to
blank characters.

Card Type 1

Column

1-52

Card Type 2

Column

1-80

Card Type 3

Column
1-5

6-10

Item

AXITLT

Item

TITLE

Item
NLOBE

NHARM

Type

Type

Description

Title for plotting routine

Description

Titl2 of case for printout

Description
No. of mixer lobes

Mo. of harmonic solutions
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Column Item  Type
i-10 PT1 F
11-20 TT1 F
21-30 GAM1 F
31-40 R1 F
41-50 PINF F
Card Type 5
Column Item Type
1-10 PT2 F
11-20 TT2 F
21-30 GAM2 F
31-40 R2 F
Card Type 6
Column Item Type
1-5 IMXFIN I
mesh
6-10 JMXFIN I
mesh
11-20 XMIN F
21-30 XMAX F
31-40 RMIN F
41-50 RMAX F

Description

Total pressure of primary flow, psi
Total temperature of primary flow, "R

Y,, specific heat ratio of primary flow

1

R1, gas constant of primary flow
ft=1b/1bm- R

Static pressure of external or ambient
flow, psi

Descrigtion

Total pressure of fan flow, psi
Total temperature of fan flow, "R
72, specific heat ratio of fan flow

R2, gas constant of fan flow,
ft-1b/1bm- R

Description

No. of axial (I) grid lines on finest
No. of radial (J) grid lines on finest

Xmin, Minimum axial grid location
Xmax»> Mmaximum axial grid location
*Rmin, minimum radial grid location

*Rmax, maximum radial grid location

*Coordinate data for centerbody and fan cowl geometries must be specified

within these radial grid limits.
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Card Type 7

Maximum of five grid halvings are possible. with last being on finest mesh.
Setting NGRIDS=1 will calculate only on finest mesh.

Column
1-5
6-10

11-15
16-20
21-25
26-30

Card Type 8

Column

1-10
11-20

21-30

Card Type 9

Item

NGRIDS
MAXSWP(1)

MAXSWP( 2)
MAXSWP(3)
MAXSWP( 4)

MAXSWP
(NGRIDS)

Item

RLXSUB

PHIXT

PHIR

Type
I

I

Type
F

Descrigtion

No. of grids used in mesh halving

Maximum No. sweeps on grid 1 without
satisfying its convergence tol.

Maximum No. sweeps on grid 2
Maximum No. sweeps on grid 3
Maximum No. sweeps on grid 4

Maximum No. sweeps on grid 5

DescriEtion

Over Relaxation factor for SLOR
(Recommended=1.7)

Factor controlling @x¢ artificial
time term

Factor controlling @ artificial time
term

Extrapolated Relaxation Parameters (Set tc zero for no extrapolation)

Column

FREE FORMAT

Item

INSTEP

INDJMP

TOLJMP
NSWAVE

Type
I

Description

Mirnimum No. iteration sweeps before
forced extrapolation (default=250)

Minimum No. iteration sweeps between
extrapolation cycles (default=25)

Tolerance factor (default=1.5)
No. of sweeps used in calculating

average residual for extrapolation
(default=5)



Card Type 10

Qutput control parameters

Column Item Type
1-5 IDUMP I
6-10 NTH I
11-15 NR I
16-20 IPLOT I

Card Type 11

Description

=0, Minimum output (Input,
Fourier analysis, surface Cp)
=1, + Surface Mach No.

=2, + surface g's

=3, + diagnostic output dump

Number of azimuthal output planes
at lobe trailing edge

Number of radial output points at
lobe trailing edge

=0, No output plots

=1, Summary plots

=2, + Final grid Cp solution

=3, + potential and Cp for all
grids

Specify NSTA cards of input data (Program will read to end of file)

Column Item Type
1-10 STA(I) I
11-20 RID(I) I
21-30 REL(I) I
31-40 ROD(I) 1
41-50 RFV(I) I
51-60 XPCNT(I) I

Description

Axial Station, in

RID, Centerbody/plug radius, in.

R crown, lobe crown or maximum radius,

in.

ROD, Fan cowl radius, in.

RFY, lobe fan valley or minimum radius,

in.

a/¢ , Percent of half lobe angle to
radial side-wall plane (input some
dummy value for axisymmetric problems)
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D. Sample Inout (JT8D-209 Forced ‘tixer)

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

INPUT ECHO (CARD IMAGE)

OO0~ WV & N -

coL

coL

10

20

30

40

50

60

70

80

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

FLOMIX TEST CASE
JT8D MIXER NOZZLE SMOOTHED DATA (46 EQUALLY SPACED POINTS)

12 6
38.1
36.5

129 129
3 500
1.50
0 0
1 9

0.30000

0.50000

0.70000

0.90000

1.10000

1.30000

1.50000

1.70000

1.90000

2.10000

2.30000

2.50000

2.70000

2.90000

3.10000

3.30000

3.50000

3.70000

3.90000

%.10000

%.30000

4.50000

4.61300

4.20000

5.10000

5.30000

$.50000

5.70000

5.90000

6.10000

6.30000

6.50000

6.70000

6.90000

7.10000

7.30000

7.50000

7.70000

7.90000

8.10000

1360.0
519.7
0.0

400 300

0 9.0
20
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37000
1.37001
1.37027
1.36046
1.3317%
1.29293
1.26135
1.15748
1.08316
1.008483
0.93437
0.85979
0.78520
98.71067
8.63636
0.56219
0.48260
0.41623
0.34448
0.27501
0.20645
0.13948
0.07433
0.01003

1.4
1.4
10.0

2.50308
2.50220
2.49995
2.649682
2.49372
2.49210
2.49592
2.50770
2.54077
2.60664
2.688%0
2.76950
2.84437
2.91311
2.97525
3.03046
3.07743
3.11496
3.14233
3.15891
3.16393
3.15617
3.14600
0

.

« o s

.

PRI

0000000000000 OO
. .« . B
XN -N-N-N-N- - - - - - -

53.3
53.3

3.59941
3.60273
3.59208
3.58556
3.56682
3.54987
3.53214
3.51697
3.50459
3.49427
3.48539
3.47558
3.46476
3.45240
3.43847
3.42368
3.40716
3.39006
3.37188
3.35311
3.33430
3.31538
3.30470
3.27834
3.26075
3.264317
3.22710
3.21132
3.19571
3.18172
3.16774
3.15439
3.14216
3.12992
3.11836
3.10742
3.09663
3.08634
3.07611
3.06597

14.5
1.0
4.3

2.72835
2.73194
2.73019
2.72254
2.70%07
2.63888
2.66104
2.62474
2.57560
2.51038
2.43535
2.35800
2.27979
2.20069
2.1207

2.04014
1.95911
1.877%0
1.79665
1.71544
1.63440
1.55361
1.50800

o .

D000 O0O0OOOONO0O0ODDO0OO

.

QOO0 OCOO

W in

.

. .

. PR T T T T T T I T
nunnuUuVLLLLBVUVNLULUVUVLLUVUVILLLLUVV L VNV LUV VNN

.

.

.5
.5

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

10

20

30

40

50

60

70

80



E. Subroutine Definition for FLOAIX Program

CIIHEIIEN 6-36 56 3638 636 36 30-THIEIE0F 06 30300800 16006 303600 9630 06 HHI-OHIEIHIE D0 10 0L HSHIE S HHE - IHHHE

o000 0000O0000000O00N000A0NAOONON000N00O00N000ANNA0000000

WELCOME TO FLOMIX, THE AXISYMMETRIC POTENTIAL FLOW ANALYSIS. THE
GUDERLEY-VON KARMAN TRANSONIC SMALL OISTURBANCE EQUATION IS THE
GOVERNING PARTIAL DIFFERENTIAL EQUATION. THE DISCRETIZED
FORMULATION IS BASED ON A FINITE VOLUME CONSERVATION OF MASS
FLUXES. THE BOUNDARY CONUITIONS ARE APPLIED ON THE EXACT SURFACE.
A NONCONSERVATIVE SHOTK POINT OPERATMR IS AVAILABLE IN LIFU ©°
THE DEFAULT CONSERVATIVE OPERATOR. THE CONFIGURATIONS WHICH

CAN BE ANALYSED INCLUDE STING-MOUNTED OR FINITE LENGTH NACELLES
PZTH OR WITHOUT A CENTERBODY. BOTH FREESTREAM OR WIND TUNNEL
CONDITIONS CAN BE SIMULATED. AN ACTUATOR DISK MODEL IS USED TO
SIMULATE POWER ADDITION TO THE FLOW. GRID REFINEMENT AND
EXTRAPOLATION TECHNIQUES ARE USED TO ACCELERATE CONVERGENCE.

THE MAIN ROUTINE CONTAINS THE BASIC STRUCTURE OF THE PROGRAM.

ROUTINES CALLED:
ECHO - ECHOS CARD IMAGE INPUT
FORMIX - READS THE SPECIFIED DATA FILE, OR HELPS THE USER CREATE
A NEN DATA FILE WHEN ONLY THE CONTOUR IS GIVEN.
EBC = CALCULATES THE POSITION OF THE DOWNSTREAM BOUNDARY AND THE
DOWNSTREAM MACH NUMBERS FOR EACH STREAM.

GRID - GENERATES A CARTESIAN MESH FOR THE DENSEST GRID.
XRSUBS -~ GENERATES COARSE GRID SUBSETS OF THE DENSEST GRID,
AS WELL AS CALCULATING COARSE GRID VALUES OF VARIABLES
SUCH AS IMAX, JMAX, IH, AND ITE.
BCSETS - GENERATES THE ARRAYS WHICH ARE USED TO ESTABLISH THE
EXACT SURFACE BOUNDARY CONDITIONS.
PGUESS - GENERATES AN INITIAL GUESS FOR THE POTENTIAL, PHI. THE
GUESS IS OBTAINED EITHER FROM A SAVED SOLUTION, THE
SOLUTION FROM THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL
FORM.
INITL -~ SETS UP INITIALIZATION FOR EXTRAPOLATED RELAXATION
FARFLD - GENERATES THE FAR FIELD BOUNDARY CONDITIONS. THIS
SUBROUTINE IS INCLUDED IN THE RELAXATION SWEEPING LOOP TO
ALLOW FOR PERIODIC UPDATING BASED ON THE CIRCULATION.
SLOR - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
UNDER-RELAXATION FACTOR FOR SUPERSONIC FLOMW. WHEN
THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.
UPDATE - UPDATES CORRECTIONS FOR NEXT SKEEP THROUGH RELAXATION LOOP
RESCL] - CALCULATES RESIDUES FOR EACH SWEEP THROUGH RELAXATION LOOP
OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY
TO EACH GRID. THESE INCLUDE THE CP PLOTS, THE MASS
FLOW INTEGRATIONS, AND THE DRAG CALCULATION.
FINISH - PROVIDES A SUMMARY OF THE ANALYSIS, AND WRITES
’ INFORMATIONS TO A FILE FOR FUTURE CALCULATIONS.
RECOMB - RECOMBINES EACH HARMONIC SOLUTION INTO ONE SOLUTION
PJMPLT - PLOTS THE JUMP IN PHI OVER ALL ITERATIONS

ROUTINES CALLED BY:

CIE3630 3636 36 36 30 36 36303636 36 3636 3636 336 36 2 36 3636 34 36 34 36 JH-I6-36 36 236 38 36 636 34 36 36 30 336 3636 30 36 9636 98 36 383636 36343638

IOOO0

SUBROUTINE ECHO
CARD IMAGE INPUT ECHO

ROUTINES CALLED BY:
FLOMIX PROGRAM
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63033636 2636 36 36 3600630 36306638 00 3630 36 300 3000000636 JHE30 243638 36006 06 1 0 000 0 00 DT
SUBROUTINE FORMIX(THE,AXITLT)

OO0 ONA0NNNO0000000000000000000MN0000

FORMIX DOES THE FOLLOWING:

(1) READS THE LOBE CROSS-SECTION GEOMETRY DATA FROM R. WILEY'S
PROGRAM.

(2) FORMS A SERIES OF POINTS AT EQUAL INTERVALS OF ANGLE PHI
7O DEFINE THE LOBE CROSS-SECTION FOR FOURIER DECOMPOSITION.

(3) FORMS A FOURIER DECOMPOSITION OF A SELECTED CROSS-SECTION.

(4) RECREATES THE MIXER CROSS-SECTION USING A SELECTED NUMBER OF
TERMS OF THE FOURIER EXPANSION.

{5) GIVES A TEKTRONIX SCOPE PICTURE OF THE MIXER CROSS-SECTION
AND THE FOURIER REPRESENTATION.

(6) CALCULATES A TABLE OF THE MIXER CROSS-SECTION VALUES,
CORRESPONDING FOURIER VALUES, ABSOLUTE ERRORS BETWEEN
CORRESPONDING VALUES, AND GIVES THE RMS ERROR AND MAX. ABS.
ERROR FOR THE CROSS-SECTION.

OUTPUT ARGUMENTS:

THE
AXITLT

ROUTINES
LOBGEN
EQANGS

FOREGO

FORVAL

RWINPT
REPLIC

ouUT30
LAMDAS

ROUTINES
FLOMIX

- THETA ANGLES
- PLOT TITLE

CALLED: LOBGEN, EQANGS, FOREGO, FORVAL, RWINPT, REPLIC,
QUT3D, LAMDAS

= CALCULATES MIXER LOBE SHAPES AND CROSS SECTIONS

- COMPUTES THE SERIES OF (Z,Y) PAIRS WHICH DESCRIBE THE
SHAPE OF A DIFFUSER LOBE FOR A FOURIER DECOMPOSITION OF
THE SHAPE INTO ITS FREQUENCY REPRESENTATION.

- COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES
REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER
CROSS-SECTION IS THUS APPROXIMATED FROM PHI=-THETA TO
PHI=THETA.

- COMPUTES THE VALUE OF A FOURIER SERIES AT ARCS USING NTERM
TERMS IN THE EXPANSION

- PERFORMS READING OR WRITING OF USER INPUT

- REPLICATES THE SINGLE LOBE REPRESENTATIVE INTO A MIXER
CROSS-SECTIONAL VIEW

- CREATES 3D OUTPUT FILE FOR 'MOVIE' PLOTTING

= CALCULATES AND PLOTS LAMBDAS AND LAMBDA PRIMES

CALLED BY:
PROGRAM

(36060060 .36 0 30 0000 06360 006 0606 36 300 3000 3T O 00 T DI 0 D00 000 00 00 00036 3636 0060 3030 3
§_§ROUTIN§ RWINPT(AXITLT,XPCNT,STA, ISHAPE,ALF,THE,EY,EZ,RE,FY,FZ,

000000000000

RF , IRWOPT)

THIS SUBROUTINE PERFORMS READING OR WRITING OF USER INPUT.

INPUT AND OUTPUT ARGUMENTS:
AXITLT,XPCNT,STA,ISHAPE,ALF, THE,EY,EZ,RE,FY,FZ,RF
IRWOPT - READ/WRITE OPTION

= 0, READ
=z 1, WRITE

ROUTINES CALLED BY:
FORMIX - READS THE SPECIFIED DATA FILE, OR HELPS THE USER CREATE

A NEW DATA FILE WHEN ONLY THE CONTOUR IS GIVEN.

(306306060 36 56 6-00 103636 0006 3606000 36 36365008 3636 300608 06 36 06965 36 30063608 36 363036 3636 6 30430 3 36346 04 06 -0
SUBROUT;NE g; 3D UXFF, YEF ,ZFF, PF , TANL,NSTA,NTOTL)

CREATES 30 OUTPUT FILE FOR 'MOVIE' PLOTTING

N 0000ONONO0O0000NN

INPUT ARGUMENTS:

XFF
YFF
ZFF
PF
IANL
NSTA
NTOTL

- X COORDINATES

- Y COORDINATES

Z COORDINATES

COMPLEX ARRAY FOR Y AN Z

ARRAY IDENTIFYING STATIONS THAT WERE ANALYZED
NO. OF STATIONS

NO. OF POINTS ABOUT A LOBE

ROUTINES CALLED:
REPLIC - REPLICATES THE SINGLE LUBE REPRESENTATIVE INTO A MIXER

CROSS-SECTIONAL VIEW

ROUTINES CALLED BY:
FORMIX 49



C 6 636036-36 36 3636 306 38 36 26 36 3610636 36-U6-3-06 636 20 06 D6 6134 38 06 36 0636 3606 36 366 06 DE-DEIE 36 36 36 30 S IEIHEHHE G
SUBROUTINE AREA(XO,W,APRI,AFAN,AGAP,PEN,NLOBE,NST,IERR}

THIS SUBROUTINE CALCULATES MIXER AREA ON A NON-VERTICAL PLANE
DEFINED BY THE X AXIS INTERCEPT, X0, AND ANGLE, W.
NOTE: POSITIVE W IS CCW FROM VERTICAL.

INPUT ARGUMENTS:
X0 - X AXIS INTERCEPT
W - ANGLE
NLOBE - NO. OF LOBES
NST ~ NO. OF LOBE STATIONS

OUTPUT ARGUMENTS:
APRI - PRIMARY AREA
AFAN - FAN VALLEY AREA
AGAP GAP AREA
PEN AMIX / ATOT
IERR - ERROR CODE (0-NO ERROR, 1-ERROR)

ROUTINES CALLED:
SPLIT - DETERMINES THE INTERSECTION OF A PLANE DEFINED BY
X-INTERCEPT, X0, AND ANGLE, M., AND A SPLINE FIT CURVE
DEFINED FROM VALUE OF IND.

ROUTINES CALLED BY:
LOBGEN - CALCULATES MIXER LOBE SHAPES AND CROSS-SECTIONS

036 336303656 30336000036 20 3630 D00 38 60030 D600 30 0606 D00 06300 36 D038 160036 36036 3600 303636 0636
SUBROUTINE SPLIT(XO0,W,IND,X1,R ,NST)

THIS SUBROUTINE DETERMINES THE INTERSECTION OF A PLANE
DEFINE BY X INTERCIrT, X0, AND ANGLC, W., AND A SPLINE
FIT CURVE DEFINED FROM VALUE OF IND.

IND IS USED IN FUNCTION RADIUS(X,IND,R) AS AN INDICATOR
OF WHICH SPLINE FIT IS TO BE READ.

INPUT ARGUMENTS:
X0 - X INTERCEPT
W - ANGLE
IND - SPLINE FIT INDICATOR
NST - NO. OF LOBE STATIONS

OUTPUT ARGUMENTS:
X1 - X INTERSECTIOM
R1 - INTERSECTION RADIUS

ROUTINES CALLED:
RADIUS - EVALUATES SPLINE FIT CURVES AT SPECIFIED LOCATIONS

ROUTINES CALLED BY:
AREA - CALCULATES MIXER AREA ON A NON-VERTICAL PLANE DEFINED
BY THE X AXIS INTERCEPT, X0, AND ANGLE, W.

0940606063 363646 60095600363 60606 306900 36003 0603060 30060 1 0 J 6063 I
REAL FUNCTION ZPRI(X,Y)

OO0 O0NOO0O0000000N000 OO0 00000000000

THIS FUNCTION EVALUATES MIXER PRIMARY LOBE WIDTH AT AXIAL STATION X
AND HEIGHT Y.
USED AS F(X) FOR SIMPSON(S RULE INTEGRATION.

INPUT ARGUMENTS:
X - AXIAL STATION
Y - HEIGHT

OUTPUT ARGUMENTS:
ZPRI - MIXER PRIMARY LOBE WIDTH

ROUTINES CALLED:
GEOM - CALCULATES VERTICAL SECTION GEOMETRY

ROUTINES CALLED BY:
AREA - CALCULATES MIXER AREA ON A NON-VERTICAL PLANE DEFINED BY
THE X AXIS INTERCEPT, X0, AND ANGLE, W.

0000000000000 O00000
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(C 363606 3698 36 8 300030 36 D 36 0008 0636 0636 96 36 34 360606 30 361006 00300006 I D36 1600 0600 36 S0 S8
SUBROUTINE L (STA,RID,REL,RFV,ROD, XPCNT,NST, ITRANS,ALF, THET,

OO0 00O000O00O00N0OO00ONO

OO0 00ONOONOONOND0ONN00

BYY,BZZ,RBB,CYY,CZZ,RCC)

RADIAL WALL MIXER DECK - OBTAINED FROM D. WILEY (2-23-83)

THIS ROUTINE CALCULATES MIXER LOBE SHAPES AND CROSS-SECTIONS.

INPUT ARGUMENTS:

STA
RID
REL
RFY
ROO
XPCNT
NST

STATION X VALUES

PLUS RADIUS

ENGINE LOBE RADIUS
FAN VALLEY RADIUS
OUTER CASE RADIUS
LOBE ANGLE PERCENTAGE
NO. OF STATIONS

NUTPUY ARGUMENTS:

ITRANS
ALF
THET
BYY
BZZ
RBB
cyy
czz
RCC

ROUTINES
BMFIT
GEOM
AREA

MIXER SHAPE AT EACH AXIAL STATION

ANGLE TO MIXER WALL

ANGLE OF HALF A LOBE

Y COORDINATE OF CENTERPOINT OF LOBE

Z COORDINATE OF CENTERPOINT OF LOBE
RADIUS OF THE LOBE

Y COORDINATE OF CENTERPOINY OF FAN VALLEY
Z COORDINATE OF CENTERPOINT OF FAN VALLEY
RADIUS OF FAN VALLEY

CALLED:

SPLINE FITS MIXER LINES
CALCULATES VERTICAL SECTION GEOMETRY
CALCULATES MIXER AREA ON A NON-VERTICAL PLANE

ROUTINES CALLED BY:

FORMIX

SUBROUTINE GEOM (X,STA,RID,REL,RFV,R0UD,XPCNT,ISTA,ITRANS,IERR}

THIS ROUTINES CALCULATES VERTICAL SECTION GECMETRY.

INPUT ARGUMENTS:

X
STA
R1D
REL
RFV
ROOD
XPCNT
ISTA

- AXIAL STATION TO BE EXAMINED
- STATION X VALUES

- PLUG RADIUS

~ ENGINE LOBE RADIUS

- FAN VALLEY RADIUS

- OUTER CASE RADIUS

- LOSE ANGLE PERCENTAGE

- NO. OF STATIONS

OUTPUT ARGUMENTS:
ITRANS - MIXER SHAPE AT STATION X

1ERR

- ERROR INDICATOR

RCUTINES CALLED:
BEVALE - EVALUATES BHFIT SPLINES

ARC

-~ CALCULATES VALUES FOR LOBE RADIUS, FAN VALLEY RADIUS, AND
THE HEIGHT OF THE FAN VALLEY.

RADIUS - EVALUATES SPLINE FIT CURVES AT SPECIFIED LOCATION

ROUTINES CALLED BY:
LOBGEN - CALCULATES MIXER LOBE SHAPES AND CROSS-SECTIONS.

51



OO0 0000NO0O

C
c

(9]

c

R R N e N e N N N e N N K a N X Xa N )

SUBROUTINE ARC (RS,RFAN)

GIVEN THE SIDE VIEW ENGINE LOSE HEIGHT, RELI, AND A POINT

ON THE RADIAL WALL, RS, WHERE THE ENGINE LOBE RADIUS, RBI,
AND THE FAN VALLEY RADIUS, RCI, MUST BE TANGENT, THIS ROUTINE
CALCULATES THE VALUES FOR RBI AMD RCI, AND THE HEIGHT OF THE
FAN VALLEY, RFAN,

INPUT ARGUMENTS:
RS - POINT ON RADIAL WALL

OUTPUT ARGUMENTS:
RFAN - HEIGHT OF FAN VALLEY

ROUTINES CALLED:

ROUTINES CALLED BY:
GEOM - CALCULATES VERTICAL SECTION GEOMETRY

REAL FUNCTION RADIUS(XIN,IND,STA,RID,REL,RFV,R0D,XPCNT,ISTA)

THIS FUNCTION EVALUATES SPLINE FIT CURVES AT XIN.
IND IS USED AS INDICATOR DEFINING CURVE IDENTITY

INPUT ARGUMENTS:
XIN = X VALUE AT WHICH SPLINE FIT CUSVES ARE EVALUATED

IKD - INDICATOR DEFIMING CURVE IDENTITY
STA = STATION X VALUES

RID - PLUG RADIUS

REL - ENGINE LOBE RADIUS

RFV = FAN VALLEY RADIUS

ROD ~ CUTER CASE RADIUS

XPCNY - LOBE ANGLE PERCENTAGE

ISTA - NO. OF STATIONS

ROUTINES CALLED:
BEVALE - EVALUATES BHMFIT SPLINES

ROUTINES CALLED BY:
€ECM - CALCULATES VERTICAL SECTION GEOMETRY

OIMENSION STA(1),RID(1),REL(1),RFV(1),RCD(1),XPCNT(1)
COMMON /SPLIN2/ ARID(50), BRID(S0), CRID(50), DRIC(50),
AREL(50), BREL(50), CREL(50), DREL{S0),
ARFV(50}, BRFV(50), CRFV(50), DRFV(50),
AROD(50), BROD(50), CROD(50), DROD(50),
AFCNT(50), BPCNT(50), CPCNT(50), DPCNT(50)
COMMON /SLOPE/ RIDIP, RELIP, RFVIP, RCDIP

wmeun

= 1, READ PLUG RADIUS

= 2» READ ENGINE LOBE RADIUS
= 3, READ FAN VALLEY RADIUS
= 4, READ OUTER CASE RADIUS
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06 3630303 3636306 3 360 0606 30634 0690 36-0H36 10 36-00 3636 363098 36 36 363636 36 36305 06-363-06-36 36 36 36963036 36 1 136 S0 EHEN
SUBROUTINE EQANGS (EOA,EAR,FOA,FAR,THETAO,ALPHA,ISIDOP,CURRAD,N,P)

THIS SUBROUTINE COMPUTES THE SERIES CGF (Z,Y) PAIRS WHICH DESCRIBE THE
SHAPE OF A DIFFUSER LOBE FOR A FOURIER DECOMPOSITION OF THE SHAPE
INTO ITS FREQUENCY REPRESENTATION.

INPUT:
EOA = Y-DISTANCE TO CENTER OF CIRCULAR ARC AT THE PEAK,
EAR = RADIUS OF THE CIRCULAR ARC AT THE PEAK,
FOA = Y-DISTANCE TO CENTER OF CIRCULAR ARC AT THE VALLEY,
FAR = RADIUS OF THE CIRCULAR ARC AT THE VALLEY,
THETAO = ANGLE FROM THE PEAK TO THE VALLEY,
ALPHA = ANGLE TO THE END OF THE UFPER ARC AND THE START OF THE
LOWER ARC
ISIDOP = SIDE LOBE GEOMETRY OPTION
CUR™~AD = SIDE LOBE RADIUS IF CURVEC GEOMETRY (ISIDOP=2)
N = TOTAL NUMBER OF POINTS FROM THE PEAK TO THE VALLEY EQUAL
SPACED IN ARC LENGTH.
OUTPUT:
P(I) = (Y,Z) PAIRS DEFINING ONE LOBE OF THE MIXER FROM

ROUTINES CALLED:

ROUTINES CALLED BY:
FORMIX

0000000 000000000000 OON0N

(C 3636 05-06-96.36-36- 35 36 36 3638 3 2606 36 38 36 3636 30 36 3 36 6 36 3636 36 3638 38 36-36 30 3¢ ¢ 5530 UE 6 236 36 JH-30 36360696 36 30 608 9 36 96

SUBRQUTINE_ LAMDAS(IANL)
CALCULATES AND PLOTS LAMBOAS ANO LAHMBOA PRIMES

INPUT ARGUMENTS:
IANL =~ ARRAY IDENTIFYING STATIONS THAT WERE ANALYZED

ROUTINES CALLED:
BMFIT - PERFORMS A SPLINE FIT OF THE USER LAMBOAS
BEVAL - PERFORMS AN EVALUATION BASED ON THE SPLINE FIT

ROUTINES CALLED BY:
FORMIX

000000000000
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SUBROUTINE FOREGO(NPL,P,ARSIN,BRCOS,AZR ,BNR }

THIS SUBROUTINE COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES
REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER CROSS-SECTION
IS THUS APPROXIMATED FROM PHI=-THETA TO PHI=THETA.

INPUT:
NPL = EVEN NUMBER OF DATA POINTS.
P(I) = (Z,Y) PAIRS, I=1,...,NTOTL.
OUTPUT:
ARSIN = (NPL/2-1) COEFFICIENTS FOR THE SINE TERMS OF THE EXPANSION
BRCOS = (NPL/2-1) COEFFICIENTS FOR THE COSINE TERMS OF THE
EXPANSION
AZR = CONSTANT TERM IN THE SERIES.
BNR = COEFFICIEMT BNZ OF BNR*COS(NTOTL/2%DELPHI}, WHERE
DELPHI = 6.28318%(K-1)/NPL, K=1,2,...,NPL.

ROUTINES CALLED:
SERIES - DETERMINATION OF COEFFICIENTS IN SERIES

ROUTINES CALLED BY:
FORMIX

SUBROUTINE FORVAL (NTERM,ANGL,ACOEF,BCOEF,AZ,FVAL,BNR)
THIS SUBROUTINE COMPUTES THE VALUE OF A FOURIER SERIES AT ARCS
USING NTERM TERMS IN THE EXPANSION.
INPUT:
NTERM = NUMBER OF TERMS USED IN THE EXPANSION.
ANGL = ANGLE TO BE EVALUATED
ACOEF(I) = COEFFICIENT OF COSINE TERMS, I=l,...,NMAX.
BCOEF(I) = COEFFICIENT OF SINE TERMS, I=1l,...,NMAX.
AZ = CONSTANT TERM IH THE SERIES.
OUTPUT:

FVAL = VALUE OF THE EXPANSION.

ROUTINES CALLED:

ROUTINES CALLED BY:
FORMIX

SUBROUTINE REPLIC (PF,NTOTL,NLOBE, IP,X3D,XF)

SUBROUTINE REPLIC REPLICATES THE SINGLE LOBE REPRESENTATION INTO
A MIXER CROSS-SECTIONAL VIEW.

INPUT:
PF{I) = (ZF,YF) PAIRS, I=1,...,NTOTL.
IP = STATION INDICATOR
13D = SINGLE OR TOTAL STATION REPLICATION INDICATOR
NTOTL = NO. OF PAIRS
XF = STATION LOCATIONS

ROUTINES CALLED:
PLTEK2

ROUTINES CALLED BY:
FORMIX
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SUBROUTINE SERIES (Y,N,AZ,A,B,AN,YY,Z,H)

DETERMINATION OF COEFFICIENTS IN SERIES

INPUT:
Y(K) = INPUT VALUE OF FUNCTION AT AN ANGLE OF TK=2.#%PI*(K-1)/N
FOR K=1 TO K=N
PI = 3.1415927.....
N = EVEN NUMBER OF INPUT FUNCTION VALUES (MUST EXCEED 2)
OUTPUT:
AZ = CONSTANT TERM IN SERIES
A = (N/2-1) REAL OUTPUT VALUES OF COt FFICIENTS IN COS SERIES
B = (N/2-1) REAL OUTPUT VALUES OF COFFFICIENTS IN SINE SERIES
AN = COSINE(N/2%TK) TERM IN SERIES
Yy = DUMMY STORAGE OF LENGTH N+2 (REAL)
Z = DUMMY STORAGE OF LENGTH 2¥N (REAL)
W = DUNMY STORAGE OF LEHGTH N (REAL)
llllllllllil*l'lll*lliillli&*ll'llll*llili!ﬂ*iilliililill{i&lll*!*lii
L=N/2-1
Y(K)=AZ+ SUM (A(L)*COS{L®TK)+B( L I®SIN( LK) e ANRCOS(N/2#TK )
L=1

Ill*l*‘llil!illll*iil'!ll*ii*lllll***lill!*é!*i&*l&lliil‘illiilll‘il*

ROUTINES CALLED:
RFAST - FAST FOURIER TRANSFORM OF REAL DATA

ROUTINES CALLED BY:
FOREGO - COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES
REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER CROSS
SECTION IS THUS APFROXIMATED FROR FHI=-THETA TO PHI=THETA.

SUBROUTINE SERINVIY,N,AZ,A+ByAN,YY,Z W)

REVERSE OF °‘SERIES'

INPUT:
Y(K} = INPUT VALUE OF FUNCTION AT AN ANGLE OF TK=2 . #PI#(K-1)/N
FOR K=1 TO K=N
PI = 3.1415927.....
N = EVEN NUMBER OF INPUT FUNCTION VALUES (MUST EXCEED 2}
QUTPUT:
AZ = CONSTANT TERM IN SERIES
A = {N/2-1) REAL OUTPUT VALUES OF CCEFFICIENTS IN COS SERIES
B z (N/2-1) REAL OUTPUT VALUES OF CUEFFICIENTS IN SINE SERIES
AN = COSINE(N/2#TK) TERM IN SERIES
Yy = DUMMY STORAGE OF LENGTH N+2 (REAL)
4 = DUMMY STORAGE OF LENGTH 2#N (REAL)
W = DUMMY STORAGE OF LENGTH N (REAL

ROUTINES CALLED:
RFASTI - REVERSE OF ‘RFAST'

ROUTINES CALLED BY:
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SUERQUTINE RFAST(X,Y,N,Z,uW,S)

FAST FOURIER TRANSFORM OF REAL DATA

INPUT:

X = N REAL INPUT VALUES

N = EVEN NUMBER OF IMNPUT VALUES (MUST EXCEED 2)

S = SIGN CONTROLLING DIRECTION OF TRANSFORM
OUTPUT:

Y = N/2+1 COMPLEX OUTPUT VALUES

4 = DUIRMY STORAGE OF LENGTH 2N (REAL)

W = DUMMY STORAGE OF LENGTH N (REAL)

THIS PRODUCES 'OUTPUT Y' FROM 'INPUT X', WHERE
363636 3036 36163 380836 369606 6 36 D68 3600630 30 3030 30 0090 36 30 6 0600309436 54 38 000638 06 06 0 06 36 9690 963036 30-3696.06 26 . 96.96 3636 36 3.
K=N
Y{JI=SUM X(KI*EXPUSIGN( 1. ,S5)%I*2#PI#( J-1 }#(K-1)/N)
K=1
43606 360636 26 363038 266 I6-060636-06 36 363698 3000 38 3636 3036 3630063606 360636 336 36-36-94 3636 36 3416 36 06-06 3636 0630 36 6 3006 3696 36 3496 6. 96.96
WNITH I=SGRT(-1) AHD PI=3.14159,........
NOTE THAT Y(N-J42)=CONJ(Y(J}} FOR J=1 TO J=N/2+1
THUS CNLY Y(1) TO Y(N/2+1) ARE CALCULATED
COMPLEX NWUMBERS ARE HANDLED IN FORTRAN & CONVENTION, NAMELY THE
REAL AND IMAGINARY PARTS ARE STORED IN ALTERNATE CELLS, STARTING
WITH THE REAL PART OF Y(1) IN THE FIRST LOCATION, ETC.

ROUTINES CALLED:
FAST - FAST FOURIER TRANSFORM OF COMPLEX DATA

ROUTINES CALLED BY:
SERIES - DETERMINATION OF COEFFICIENTS IN A SERIES

SUBROUTINE FAST (X,Y,N,2Z,H,S)

FAST FOURIER TRANSFORM OF COMPLEX DATA

INPUT:
X = N INPUT VALUES (COMPLEX)
N = NUMBER OF VALUES
OUTPUT:
Y = N OUTPUT VALUES (COMPLEX)
H4 = DUMMY STORAGE OF LENGTH 2N (COMPLEX)
W = DUMMY STORAGE OF LENGTH N (COMPLEX)
) = SIGN CONTROLLING DIRECTION OF TRANSFORM

THIS PRODUCES ‘OQUTPUT Y*' FROM ‘INPUT X', WHERE
3636 0696 3636 3636 -3 DU 396 336 363636 36 56 36 D696 19050 3606 36 3636 0036 36 3636 36 96 36 06 06061 0 0606 0616 3636 36 36 363636 96 5696 06 06 ¢
K=N
Y(J)=SUM XIKIREXPISIGN( 1. ,S)*In2%pIn(J~1)%(K-1)/N)
K=1
B30 3608 06 .06 06 3630 36963606 163036 303636 3610 36-06 2638 D6 36 .36 36 306 36 3636 3606 3038 36 163636 2 36 36 36 6 36 36 36 .36 36 M6 3660626 H-06 34
WITH I=SQRT(-1), S=¢l. OR S=-1., AND PI=3.14159........

ROUTINES CALLED:
ROUTINES CALLED BY:

RFAST - FAST FOURIER TRAMSFORM OF REAL DATA
RFASTI - REVERSE OF °'RFAST'
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SUBROUTINE EBC

CALCULATES THE POSITION OF THE DOWNSTREAM BOUNDARY OUNS
MACH NUMZERS FOR EACH STREAM, 4O THE D TREAN

INPUT AERO DATA:
PT1, PT2, PINF, TT1, TT2, €AM1, GAM2, Ri, R2

OUTPUT ARGUMENTS:
EMIS - PRIMARY STREAM MACH NO. FOR THE SPLITTER
EM2S -~ SECONDARY STREAM MACH NO. FOR THE SPLITTER

ROUTINES CALLED:
HAF -~ SEARCH ROUTINE USED BY EBC

ROUTINES CALLED BY:
FLOMIX PROGRAM

0000000000000 (3]

SUBROUTINE HAF (MAX,MIN,X,Y,IC,IER)
— =
THIS ROUTINE IS A SEARCH ROUTINE FOR EBC.

INPUT ARGUMENTS:
MIN - MINIMUM VALUE OF OUTPUT PARAMETER FOR SEARCH

MAX - MAXIMUM VALUE OF OUTPUT PARAMETER FOR SEARCH

X - CURRENT VALUE OF OUTPUT PARAMETER DURING SEARCH

Y -~ INPUT PARAMETER TO BE MATCHED

IC - 1, INPUT PARAMETER IS SPLITTER SECONDARY FLOW AREA

2, INPUT PARAMETER IS COMPOUND FLOW FUNCTION, BETA
- 3, INPUT PARAMETER IS SECONDARY FLOW RATE

OUTPUT ARGUMENTS:
X - IC=1, OUTPUT PARAMETER IS SPLITTER STATIC PRESSURE
- IC=2, OUTPUT PARAMETER IS NOZZLE EXIT STATIC PRESSURE
- IC=3, OUTPUT PARAMETER IS DOWNSTREAM BOUNDARY STATIC PRESSURE
IER - ERROR INDICATOR: O IS 0.K., 1 IS NO CONVERGENCE IN 20 TRIES.

ROUTINES CALLED:
ROUTINES CALLED BY:

EBC - CALCULATES THE POSITION OF THE DOWNSTREAM BOUNDARY AND THE
DOWNSTREAM MACH NUMBERS FOR EACH STREAM

(GO0 000 05606360 9900 00000 00000 0 06 000000006 90030 06000 06 00 0 0 0 0 B
SUBRCUTINE ERID

THIS SUBROUTINE GENERATES A CARTESIAN MESH FOR THE DENSEST GRID.
ROUTINES CALLED:

ROUTINES CALLED BY:
FLOMIX PROGRAM

(2 XsXaKs Xz e Na X2l
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SUBROUTINE XRSUBS
e —— %

THIS SUBROUTINE GENERATES COARSE GRID SUBSETS OF THE DENSEST GRID,
AS WELL AS CALCULATING COARSE GRID VALUES OF VARIABLES

SUCH AS IMAX, JMAX, IH, AND ITE.

ROUTINES CALLED:

ROUTINES CALLED BY:
FLOMIX PROGRAM

NOoOOONONOOO

363363836 .36 3960636 303 36336 16 3-3606 36 063006636 306 360606 306 36 00-3000-HE00 0600636063606 063638 6.6 316 90100 0634
SUBROUTINE BCSETS(XNTR,RNTR,IMXINT)

THIS SUBROUTINE GENERATES THE ARRAYS WHICH ARE USED TO ESTABLISH THE
EXACT SURFACE BOUNDARY CONDITIONS.

OUTPUT ARGUMENTS:
XNTR - X INTERPOLATED SURFACE COORDINATES FOR CPPLOT
RNTR - R INTERPOLATED SURFACE COORDINATES FOR CPPLOT
IMXINT -~ NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED BY:
FLOMIX PROGRAM

OO0 O000

AHIEIEIE 6 -3 06 00 630 36 06363638 36636 36 1636 06-06 36 38 36 30 36 3036 .06 366 200 3000 30060
CONTOUR BOUNDARIES
L = 1 - CENTERBODY
2 = INTERNAL SPLITTER
3 - EXTERNAL SPLITTER
4 - NOZZLE
U060 36 38 000008 06 36 160836 3636 3636 36 1 36 3¢ 336 3636 3636 36 36 3696 3 98 36 36 - DR 38D

[z X X NoNs N NNy

CFEIENEIEII0 36 30663058 36363036 3636 36 36 3069036 903630 3630 3630 36 2016 30 3634 363636 3636 36 369436 2 1600 36369606 9606 6
SUBROUTINE PGUESS
o -1

THIS SUBROUTINE GENERATES AN INITIAL GUESS FOR THE POTENTIAL, PHI.

THE GUESS IS OBTAINED EITHER FROM A SAVED SOLUTION, THE
SOLUTION FROM THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL FORM.

ROUTINES CALLED:

ROUTINES CALLED BY:
FLOMIX PROGRAM

0000000000

SUBROUTINE PLTGRD(XNTR,RNTR, IMXINT)

THIS ROUTINE HANDLES GRID PLOTTING

INPUT ARGUMENTS:
XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS
RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSETS
IMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED: PLTEK2

ROUTINES CALLED BY: FLOMIX PROGRAM

OO0 OONON
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SUBROUTINE INITL

THIS SUBROUTINE SETS UP INITIALIZATION FOR EXTRAPOLATED RELAXATION.
ROUTINES CALLED:

ROUTINES CALLED BY:
FLCI‘IX PROGRAM

1. IF AN EXTRAPOLATION DOES NOT OCCUR WITHIN INSTEP SWEEPS, AN
EXTRAPOLATION WILL BE FORCED. AT THIS POINT A NEW TOLJMP
COEFFICIENT WILL ALSO BE COMPUTED.

2. IXTRAP - A SWEEP COUNTER FOR COMPARISON WITH INSTEP

3. AT LEAST INDJMP SWEEPS WILL OCCUR BETWEEN EXTRAPOLATIONS.

4. TOLJMP - A COEFFICIENT WHICH IS MULTIPLIED BY THE STANDARD
DEVIATION OF THE DISTRIBUTION OF CORRECTIONS OVER THE MATRIX FOR
A GIVEN SWEEP.

THE ABS. VALUE OF THE AVERAGE CORRECTION IS COMPARED WITH TOLJMP
TIMES THE STANDARD DEVIATION.
5. NSTEPS - THE NUMBER OF NODES IN THE GRIOD.

CALCULATIONS.
6. XLAMS - THE SUM OF THE RATIOS OF THE CORRECTIONS WITHIN EACH
SWEEP.

7. RLAHSS - THE SUM OF THE SQUARES CF THE RATIOS OF THE CORRECTIONS
WITHIN ANY GIVEN SWEEP.

a. 9LAMS - THE S'f: UF THE CORRECTITMS OVER ANY SIVEN SWIEP.

9. ISTEP - A COUNTER WHICH IS COMPARED WITH INDJMP AND RESET TO 1
WHEN AN EXTRAPOLATION TAKES PLACE.

lv. WSWAVE - THE NUMBER OF SWEEPS USED II' CALCULATING THE AVERAGE
RESIDUAL FOR AN EXTRAPOLATION.

11. ISWAVE - A COUNTER FOR COMPARISON WITVH NSWAVE.

c'l'l!li!bl&lllililll&l'liiiillli'&illl'#'&‘il‘*lil“""'
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SUBROUTINE SLOR

THIS SUBROUTINE PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX

IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH

AN OVER-RELAXATION FACTOR FOR SUBSONIL FLOW, AND AN
UNDER-RELAXATION FACTOR FOR SUPERSONIC FLOW. WHEN

THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

ROUTINES CALLED:

MATRIX - SETS UP THE MATRIX OF COEFFICIENTS RESULTING
FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
CONDITIONS. THE R#PHIR RULE FOR THE CENTERBOOY AND THE
OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

TRIDI - SOLVES A SET OF N TRIDIAGONAL EQUATIONS AS OBTAINED IN
THE MAIN PROGRAM FOR A RADIAL COLUMN.

ROUTINES CALLED BY:
FLOMIX PROGRAM

CH6 2636 2636263636 0630336336003 30 3 3036 30-36-06 36 36 36 3036 36 3636 36 36 3 2 36 36 352436 3636 38 36 38 36 3 36 3¢ 36 363036 3436

100000000

SUBROUTINE FARFLD
THIS SUBROUTINE GENERATES THE FAR FIELD BOUNDARY CONDITIONS. IT IS
INCLUDED IN THE RELAXATION SWEEPING LOOP TO ALLOW FOR PERIODIC
UPDATING BASED ON THE CIRCULATION.
ROUTINES CALLED:

ROUTINES CALLED BY:
FLOMIX PROGRAM
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SUBROUTINE MATRIX
e __—

THIS SUBROUTINE SETS UP THE MATRIX OF COEFFICIENTS RESULTING
FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
CONDITIONS. THE R¥PHIR RULE FOR THE CENTERBODY AND THE

OQUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE

IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

ROUTINES CALLED:
BCABCW - ESTABLISHES BOUNDARY COMDITION VALUES FOR MATRIX
COEFFICIENTS A, B, C, AND W
PDEABC - CALCULATES THE PDE MATRIX COEFFICIENTS A,B, & C, AND THE
RIGHT HAND SIDE W

ROUTINES CALLED BY:
SLOR - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
1S SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
UNDER-RELAXATION FACTOR FOR SUPERSONIC FLOW. WHEN
THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

ONOO0O000NDNOONN0O00O0NONN0O0

363630 0. 36-36 36 166 3030 3036 D606 38 D8 3636303030 36 003630363006 36 36 3636 36 36 3006 361 30 36 30309630 36 3036 3408 3 D01 S0 08
SUBROUTINE TRIDI(A,B,C,VECTOR,H,N)

THIS SUBROUTINE SCLvES A SCT OF N TRLDIAGONAL EQUATIONS AS
OBTAINED IN THE MAIN PROGRAM FOR A RADIAL COLUMN. THE RESULTS
ARE LEFT IN THE ARRAY »VECTOR* AND A,B,C AND W ARE DESTROYED.

INPUT:
A - WORK VECTOR FOR TRIDIAGOMAL EQUATIONS
B - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
c = WORK VECTOR FOR TRIDIAGONAL EQUATIONS
W - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
N - NO. OF TRIDIAGONAL EQUATIONS

OUTPUT:

VECTOR - RESULTING ARRAY
ROUTINES CALLED:

ROUTINES CALLED BY:
SLOR - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
. EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
UNDER-RELAXATION FACTOR FOR SUPERSONIC FLOW. WHEN
THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

1000000000000 000000

33106 360636 36 36 3636 36 36 3636 0636 3636 36 0 060638 06 0636 30-36 3606 20 3638 363036 30-06 36 3000 36 06 36 36 36 36 36 3630 6 36 00960636 4638
SUBROUTINE RESCLI

c

C THIS SUBROUTINE CALCULATES RESIDUES FOR EACH SWEEP THROUGH RELAXATION
C LooP.

c

C ROUTINES CALLED:

c HATRIX - SETS UP THE MATRIX OF COEFFICIENYS RESULTING

c FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
c CONDITIONS. THE R*PHIR RULE FOR THE CENTERBODY AND THE
C OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
c LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
c IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

c

€ ROUTINES CALLED BY:

c FLOMIX PROGRAM

c
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OO0 0O00000000
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2008 06 060 0F 0 0638 06 006 0000 00 000 06 06 106 0000 01 06000 0000 0000 0000 00 01 000 0000 0 008 1 00 00 06 00 00000 06000 00 0 00 0 00 90 08 00
SUBROUTINE PDEABCIISTR)
e ———

THIS SUEROUTINE CALCULATES THE PARTIAL DIFFERENTIAL EQUATION
MATRIX COEFFICIENTS, A,B, AND C, AND THE
RIGHT MAND SIDE, W.

ROUTINES CALLED:

ROUTINES CALLED BY:
MATRIX - SETS UP THE MATRIX OF COEFFICIENTS RESULTING
FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOMDARY
CONDITIONS. THE R¥PHIR RULE FOR THE CENTERBCDY AND THE
OUTER BOUNDARY IS INCLUBED IN THE MATRIX TO SIMPLIFY THE
LOSIC FOR VARIABLE COLUITM LENGTHS. AT SOME FUTURE DATE
IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

3036 200630 3696 3636 2630 360536 36 06300636 396 063636 06 0-04-36 3008 2036303000 36 DEEIE 040 0000 06 30 SH-0-IHIHE SIS 3
SUBROUTINE BCABCH(ISTR,IBND)

THIS SUBROUTINE ESTABLISHES BOUNDARY CONDITION VALUES FOR MATRIX
COEFFICIENTS A, B, Cy» AND W

INPUT ARGUMENTS:
ISTR - STREAM NMBER  (1-PRIMARY, 2-SECONDARY)
IBND - BOUNDARY NUMBER (1-CENT.,2-INNER SPL.,3-OUTER SPL.,4-NOZZLE)

ROUTINES CALLED:
DELTAF - CALCULATES DELTA FUNCTIONS

ROUTINES CALLED BY:
MATRIX - SETS UP THE MATRIX OF COEFFICIENTS RESULTING
FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
CONDITIONS. THE R#PHIR RULE FOR THE CENTERBODY AMD THE
OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

c!lll’ﬂllllﬂll!Illi.lllii‘lll'llll.l’Il'.il‘.Illllllli.i‘lﬂlll&.
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SUBROUTINE PLUME

THIS SUBROUTINE IS USED FOR CONFIGURING THE PLUME.
ROUTINES CALLED:
ROUTINES CALLED BY:
MATRIX - SETS UP THE MATRIX OF COEFFICIENTS RESULTING
FROM THE PARTIAL ODIFFERENTIAL EQUATION AND THE BOUNDARY
CONDITIONS. THE R*PHIR RULE FOR THE CENTERBOOY AND THE
OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.
SUBROUTINE UPDATE
c
C THIS SUBROUTINE CALCULATES THE CORRECTIONS FOR THE NEXT SWEEP.
c
C ROUTINES CALLED:
g EXTRAP = CALCULATES THE EXTRAPOLATED HELAXATION FOR THE NEXT SWEEP
€ ROUTINES CALLED BY:
c FLOMIX PROGRAM
c
SUBROUTINE EXTRAP
,  Dmtourine oA
€ THIS SUBROUTINE CALCULATES THE EXTRAPOLATED RELAXATION FOR THE NEXT
C SWEEP.
c
C ROUTINES CALLED:
c
€ ROUTINES CALLED BY:
[ UPDATE - CALCULATES THE CORRECTIONS FOR THE NEXT SWEEP
c
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FUNCTION DELTAF(I,J)
e

THIS FUNCTIONS IS USED BY BCABCW TO CALCULATE DELTA FUNCTIONS.

ROUTINES CALLED BY:

BCABCW - ESTABLISHES BOUNDARY CONDITION VALUES FOR MATRIX
COEFFICIENTS A, B, C, AND W

10000 0O000

CHEIEIIEIE I 5060 50003030 00 060D 006 00 D60 06 0 30 D0 DI U6 106 SIS 3000 00 36000 6 -0 68
SUBROUTINE OUTPUT{XNTR,RNTR, IMXINT)

THIS SUBROUTINE CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY TO
EACH GRIO.

INPUT ARGUMENTS:
XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS
RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSETS
IMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED:
MASFLO - PERFORMS THE MASS FLOW INTEGRATIONS
CPPLOT - PLOTS CP CALCULATIONS
FLDPLT - PLOTS CPS IN THE FLOW AREA

ROUTINES CALLED BY:
FLOMIX PROGRAM

0000000000000 NNNO

I 363636 3096 36 36 16963630 36 0636 D666 3036 363636 3 16 3 36-36 36 3636.36 3656 308 36 3636 003606 3696 36 I 36 36 4638 36 2006 36 3.8 3¢
SUBROUTINE PHIPLT(PHI,X,R,IMAX, JMAX,NI,NJ,NK,K,1C,D,H,UP,SHR,ETA)

THIS ROUTINE HANDLES PLOTTING OF PHI VALUES.
ROUTINES CALLED: PLTEK2

ROUTINES CALLED BY:

OO0 0

G636 3636 36 338 38 26363636 96 363U HEIE T D6 I6 JEI61 9636 36 36 366 0696 36 2366 36 06 3636 JH6 3836 36 3636 3 .96 36 36 33636964
SUBROUTINE CPPLOTUXNTR,RNTR, IMXINT)
[

THIS ROUTINE PLOTS CP CALCULATIONS

INPUT ARGUMENTS:
XNTR = X INTERPOLATED SURFACE COORDINATES FROM BCSETS
RNTR ~ R INTERPOLATED SURFACE COORDINATES FROM BCSETS
IMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED: PLTEK2, MVCHAR

ROUTINES CALLED BY:
QUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY
TO EACH GRID. THESE INCLUDE THE CP PLOTS, THE MASS
FLOW INTEGRATIONS, AND THE DRAG CALCULATION.

OO0 O0O0O000O0000

(36 30:3630-06-96 3.36-9636-36-06 3606 36 3 36 3036 3036 FHI6-36 36 36 06363806 36 -0 16 636 3608 36 063006 3606 3 306 33006 HDHIIHIE 36
SUBROUTINE FLDPLY

PLOTS CPS IN THE FLOW AREA
ROUTINES CALLED BY:

OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY TO EACH
GRID

OO0O00O00



663636363636 3696303360063 306 3036 J6-06-06 26 36363636 08 36 36 36 06-14 36 0636 36 1636 3634 36 061036 36 36361636 36 38 9606 36108 3698
SUBROUTINE RECOMB(THE,CPS, IMXINT,NEXT)

ROUTINES CALLED BY:
FLOMIX PROGRAM

c

C THIS ROUTINE COMBINES EACH HARMOHIC SOLUTION INTO ONE SOLUTION.
c

C INPUT ARGUMENTS:

c THE - THETA ANGLES

c CPS - CPS FOR EACH CONTOUR

C IMXINT - NO. OF VALUES IN EACH CONTOUR

o NEXT - NO. OF EXTERNAL SPLITTER STATIONS
c

c

c

r

36 96903896 3635 3636 360696 96 36360636 3636 36 3636 36167630 3620 36 363636 36 T 8363636 6 36 3636 3638 636 3 .36 38 6 36 36 336 3 36 34
;ggggg!INg PgMPL!(PJHPTT.RHXP?T.RAVPTT.IHXPSP,JHXRSP.NSTOT,NHAEH)

THIS ROUTINE HANDLES PLOTTING OF THE JUMP IN PHI VALUES AND THE
MAXIMUM AHD AVERAGE RESIDUALS

JUMP IN PHI VALUES

MAXIMUM RESIDUALS

AVERAGE RESIDUALS

MAXIHUM RESIDUAL POINTER FOR EACH SWEEP FOR I
MAXIMUM RESIDUAL FOINTER FOR EACH SWEEP FOR J
MAXIMUM NO. OF POINTS TO PLOT

NO. OF HARMONICS(M(DES)

ROUTINES CALLED: PLTEK2

ROUTINES CALLED BY: FLOMIX PHOGRAM

c

c

c

c

c INPUT ARGUMENTS:
c PJHPTT -
c RMXPTT -
c RAVPTT -
c IMXRSP -
c JHXRSP -
c NSTOT -
c (HARM -
c

c

c

o

c
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APPENDIX
Scarf Angle Analysis

Mixing performance inas been found to depend on the geometry characteristics of
the lobe trailing edge plane. In particular, cutback or scarfing can be used
to optimize mixer performance. Typically , the scarf angle (%) can vary + 15°
from a radial cut. Analysis of such configurations is complicated by the
irregular radial surface presented when viewed in a cylindrical frame of
reference. An alternate representation, using a skewed system aligned to the
lobe trailing edge avoids this problem.

'1\ L 7

- X,

The governing equations can be transformed from the physical (x,r) to the
computational plane (E,q) by means of the following transformation.

&E=x-Ar Mm=r
c (A.1)

where N\ =tang =constant and c=cos%= constant. The local velocities can
then be related to these coordinates through chain rule differentiation.

2( )= 26 2 ( Y + Iy 2( )Y=23C)
x x Se 52 - 5 (A.2a)

3 =
or r S 3 ar a ar
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The ©° term has been introduced to reflect the comprisable term from the
s.d.t. expansion. Applying these flux definitions to a balance over a general
element, in a cylindrical mesh, yield}

f (%ijl)rdr —fjr.krdx +/jrkrdx —Ki[jkfé_ﬁ =0
E-w N-5 48

E-W (A.4)

Discriticizing reduces (A.4) to
T 2 ‘ -
o Ae - cAy | -] 9. she s Aw
[P jxkg © ? jka W—J [ jr“i‘ 3rkw

2 (A.5)
+ ai‘k AN - 3"|(SA5 —E"' ﬁl(AA =0

N

where gy, gp are differenced along the mesh when expressed in terms of
(A.3). Similarly one can treat boundary intersecting elements in this skewed
system. Recalling equation (22)

2 -_ A
f?jxkrdr+fjrkrdx—f3,‘.(rd)(—l(fjkcjé=o
E-w N-9 R A8
where

j-rk = >‘:< + (i}()‘")jm)

is the "known" surface flux along the main surface Rm (x). The flux balance in
the skewed system becomes
AS5] - Rmtx g, =0
[ | 8’1

where the local are as again represent only the exposed portion of the cell.
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Tt is desirable, in general, to have a skewed radial mesh over the entire
calculation domain but boundary conditions are typically defined along radial
upstream and downstream planes. The skewing transformation (A.1) must consider
A=Alx,r). A generalization of the previous analysis is simplified if we
introduce the flux balance in terms of the contravariant velocity components;
those defined normal to the (£,m) coordinates. Following the approach of
Doria, equations (A.2) applied to (x,r) yields four separate equation systems
for the transformation metrics; eq.

e

( ) A (=£,X{ +V'xxv, xs-‘-_._.___..zl

ExNe =~ Nxé
O =& % + vexg e

If A= constant, these equations yield the following metrics relations

XE-I Xr}:S \"ezo f‘,‘:c

(A.6)
Associated with this transformation are the Jacobian
:r:. XEY‘,) -X.]\“s = C
A.7a)
and the three invariant components of the metric tensor
1 7
Qu = Xg + T =/
Ay = XgY.,‘-ff‘er,]:o
N 2
U2z = Xy 410y = | (A.7b)

The conservation flux balance, in terms of the contravariant velocities (U,V)
associated with (E,q) directions, is now given by the following components

JUAs = o Ag + %_E[au{;zj{ _a,,_j,]]= r‘.]AE + Ae[[{‘is-/\ja

TVha= "7 A, + %1 [-Q|ZGL3€+ anjq]r"f Ao + A'][ (A.8)
—@Lﬂg/\ -+ ;1 _J
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The leading term in each expression reflects the contribution of the
freestream velocity in the x-aligned perturbation potential formulation. One
can compare (A.8) and (A.5) to check for consistency of the models.

e b [ Mge + 29,],
[JVA"L: A”[_A@Lﬂi 4 31>‘J“~
(850 -9, %) he = ] Bege = (5700w 1 9] =019,

(70w = ho| 296 -9, |,

In the above analysis the freestream component is neglected. For a general
element it will cancel out with the opposing face's contribution. Special
consideration is needed for the surface intersecting case.

The previous analysis can now be extended to include problems to wherein the
mesh skewing varies.

g =%x- N(xr:r

1= f
c(x,r)
The metric invariants and Jacobian (A.7a,b) :an be reevaluated in terms of
g = 1-L 18 §r=-A-r 2%
c I C‘Lgr
c IX c c dr
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The exact relationship for & ,C, N can be obtained as follows. Consider the

mesh generated from the lobe trailing edge to some downstream phase. Generate
mesh skewing from fan valley contour.

X&r)-:v)

A
Vi

\

The equation of the lobe trailing edge is

Yolr) = X,(r) + (- 3) /\;|
Similarly the downstream mesh boundary is given by
Xlr)=Xg
Linearly adjusting between these boundaries
X-Yo(r) \ X% (4)- X(r)
(h-kﬁﬂ) Xa - X (1)

-—

one obtains a general function expression for the x grid variation
X(lJ (v-L)%(r +/£X4

In this frame A , at any »q line, is given by

AL = A ixe) = {m)
[x(t) - xcs))
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